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Abstract

We identify the mean growth of the independence number of random binary search trees and
random recursive trees and show normal fluctuations around their means. Similarly we also show
normal limit laws for the domination number and variations of it for these two cases of random
tree models. Our results are an application of a recent general theorem of Holmgren and Janson
on fringe trees in these two random tree models.
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1 Introduction and results

In this note we study the independence number, the domination number and related parameters
of random binary search trees and random recursive trees asymptotically. First, in Section 2, we
derive asymptotics for the mean and variance and provide central limit laws for the independence
number of both tree models. This covers a few other graph parameters which are affine functions
of the independence number, see Remark 1.6(c) below. In Section 3, we also provide central limit
laws for the domination number and related parameters for both of these cases of random tree
models. Finally, albeit coinciding with the independence number on trees, we also give a direct
proof of such a theorem for the clique cover number in Section 4.

We first recall the parameters under consideration and present the models of trees we are
looking at and state our results.
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Independence and domination number. The independence number of a graph is the size of a
maximum independent set in the graph, where an independent set is a subset of the vertices of the
graph so that no two vertices of this subset are connected (are neighbors) within the graph. The
independence number is an important and well-known graph parameter: besides its applications
in scheduling theory, coding theory and collusion detection in voting pools (see [5, 20, 1]), it has
attracted a lot of interest especially in theoretical computer science: the independence number
is well known to be NP-hard to compute in general, see for example [29]. Since then, exact fast
exponential algorithms have been developed (see [26, 25]) as well as polynomial-time algorithms
for special graph classes (claw-free graphs, P5-free graphs, perfect graphs, see [27, 23, 14]). In
general, it is also NP-hard to approximate the independence number (that is, it is not possible to
approximate it up to a constant factor in polynomial time) [3], but again for special graph classes
such as planar graphs, or more generally, for graphs closed under taking minors, polynomial-time
approximation schemes do exist [2, 13]. For bipartite graphs, thus in particular trees, by König’s
theorem, all vertices not in the minimum vertex cover can be included in a maximum independent
set (see also the remark below), and thus the independence number can be found in polynomial
time. In combinatorics, it has also received considerable attraction, starting with the early work
by Bollobás [4].

Given a finite graph G with vertex set V , a subset W ⊂ V is called a dominating set for
V if every vertex in V lies at graph distance at most 1 from W . The domination number of
G is then defined to be the minimum number m such that there exists a dominating set W of
size m. Finding dominating sets is important in finding ‘central’ or ‘important’ sets of vertices
in a network, in contexts such as facility location [15], molecular biology [24] and in wireless
networks [32]. Dominating sets have attracted considerable attention in discrete mathematics
(see [15, 16] and [18]) and as in the case of the independence number, in theoretical computer
science: it was shown already in the 1970s (see [21]) that the domination number is NP-hard to
compute, and it is also NP-hard to approximate up to a logarithmic factor in general [28]. Since
then, as in the case of the independence number, exact fast exponential algorithms have been
developed [11, 30], and faster algorithms for special graph classes have been found as well (see for
example [33] for series-parallel graphs). For trees, linear-time algorithms are known [7].

Random recursive tree and random binary search tree. A random recursive tree is a
labelled rooted tree which can be constructed as follows. For the first step we start with the root
vertex labelled 1. In the n-th step, n ≥ 2, one of the existing vertices labelled 1, . . . , n−1 is chosen
uniformly at random where a vertex with label n is attached. Subsequently, a random recursive
tree with n vertices is denoted by Λn. For reference see the survey of Smythe and Mahmoud [31].
We will need the following fact: A random recursive tree with n vertices can be cut into two
trees by removing the edge between the root vertex labelled 1 and the vertex labelled 2. This
yields two trees both with a random size, both sizes being uniformly distributed on {1, . . . , n−1}.
Moreover, conditional on their sizes, these two trees are independent and both are (after proper
relabelling of their vertices) random recursive trees of their respective size.

The random binary search tree can be constructed from a uniformly distributed random per-
mutation (Π1, . . . ,Πn) of {1, . . . , n}. The first number Π1 becomes the root of the tree. Then
the numbers Π2, . . . ,Πn are successively inserted recursively. Each number is compared with the
root. If it is smaller than the root, it is directed to the root’s left subtree, otherwise to its right
subtree. There, this procedure is recursively iterated until an empty subtree is reached, where the
number is inserted as a new vertex. Subsequently, a random binary search tree with n vertices
is denoted by Tn. For reference see Knuth [22]. We need the following decomposition property:
The left and right subtrees at the root of the binary search tree both have random sizes uniformly
distributed on {0, . . . , n− 1}. Conditional on their sizes they are independent and both are (after
proper relabelling of their vertices) random binary search trees of their respective sizes.

Results on the independence number. We denote by In the independence number of Tn and
by În the independence number of Λn. We have the following asymptotic results:

Theorem 1.1. For the independence number In of a random binary search tree with n vertices
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we have, as n→∞, that E[In] = µn+ O(1), Var(In) ∼ σ2n and

In − µn√
n

d−→ N (0, σ2)

with

µ = 2(
√

5− 3)

∫ 1

0

x
√
5 − 1

(3
√

5− 7)x
√
5 + 2

dx = 0.54287631 . . . (1)

and a constant σ > 0.

Theorem 1.2. For the independence number În of a random recursive tree with n vertices we
have, as n→∞, that E[În] = µ̂n+ O(1), Var(În) ∼ σ̂2n and

În − µ̂n√
n

d−→ N (0, σ̂2)

with the Euler–Gompertz constant

µ̂ =

∫ 1

0

1

1− log x
dx = 0.59634736 . . . (2)

and a constant σ̂ > 0.

Remark 1.3. Stephan Wagner (Stellenbosch University) informed us that he and his student
Kenneth Dadedzi have an independent approach to results similar of our Theorems 1.1 and 1.2;
they use generating functions to determine the spectrum of the Laplacian operator on these trees,
see [8]. Stephan also informed us that our representation (7) for µ̂ has the explicit integral
representation given in (2).

Results on the domination number. For the domination number of random binary search
trees and random recursive trees we have similar results.

Theorem 1.4. For the domination number Dn of a random binary search tree with n vertices
we have, as n→∞, that E[Dn] = νn+ O(1), Var(Dn) ∼ τ2n with some constants ν, τ > 0 and

Dn − νn√
n

d−→ N (0, τ2).

Similarly, for the domination number D̂n of a random recursive tree with n vertices we have, as
n→∞, that E[D̂n] = ν̂n+ O(1), Var(Dn) ∼ τ̂2n with some constants ν̂, τ̂ > 0 and

D̂n − ν̂n√
n

d−→ N (0, τ̂2).

Remark 1.5. A variation of the domination number, the so-called k-domination number of a
graph, was introduced in [10]. This is defined as the minimum size of a set S of vertices in a
graph such that each vertex of the graph (outside the set S) has at least k neighbors in S. We
can analyze these numbers as well in the case of random binary search trees and random recursive
trees and obtain normal limit laws corresponding to the ones in Theorem 1.4. However for binary
search trees, where each vertex has degree at most 3, we also have to assume that k ≤ 3 (to avoid
the trivial case |S| = n), while for random recursive trees, we may consider the k-domination
number for any constant k > 0.

Remark 1.6. (a) Various quantities for random binary search trees have systematically been
studied with respect to limit distributions by Devroye [9] and Hwang and Neininger [19]. However,
the independence number and the domination number do not fit under the assumptions made
in those two studies. Our proof relies on a recent refined study of fringe trees of random binary
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search trees and random recursive trees of Holmgren and Janson [17] which extends parts of the
results of [9, 19].

(b) Holmgren and Janson [17] also give a general formula for variances which covers our
variances σ2 and σ̂2 in Theorems 1.1 and 1.2. Their representation, in principle, allows to also
give numerical approximations for σ2 and σ̂2.

(c) There are a few (other) related graph parameters which are covered by our results, since
they are affine functions of the independence number: The matching number (also known as
edge independence number) is the size of a maximum set of edges so that no two edges have a
common vertex. For all bipartite graphs and in particular trees, the matching number and the
independence number add up to the size of the tree. Hence, for the matching numbers Mn and
M̂n of a random binary search tree and a random recursive tree with n vertices respectively, we
have E[Mn] = (1 − µ)n + O(1) with the same variance and limit as for In in Theorem 1.1, and

E[M̂n] = (1− µ̂)n+ O(1) with the same variance and limit as for În in Theorem 1.2.
The edge cover number of a connected graph is the minimum number of edges so that all

vertices are incident to at least one edge. The edge cover number and the independence number
coincide for trees.

The vertex cover number is the minimum number of vertices such that every edge has at least
one of these vertices as an endpoint. The matching number and the vertex cover number coincide
for trees.

The multiplicity of the eigenvalue 1 of the normalized Laplacian operator of a tree is twice the
independence number of the tree minus its size, see [6, Theorem 1]. Hence, Theorems 1.1 and
1.2 imply the asymptotics of this multiplicity of the two random tree models considered in the
present note as well. See [8] for a more general study of the asymptotics of the spectra of these
random trees.

The clique cover number of a finite graph G is the minimum number of colors needed to color
properly the vertices of the complement of G (the complement of G has the same vertex set as G,
and two vertices are adjacent in the complement of G if and only if they are not adjacent in G).
For trees, the clique cover number coincides with the independence number. We give a variant of
the derivation of Theorems 1.1 and 1.2 in terms of the clique cover number, see section 4.

2 Independence number

For our proof we use a simple construction of a maximum independent set by starting at the
leaves. For a rooted tree T (or a forest of rooted trees) denote by leaf(T ) the set of leaves of T
and by p(leaf(T )) the set of the parents of the leaves of T . Recursively, define

T [0] := T and T [`] := T [`−1] \
(
leaf(T [`−1]) ∪ p(leaf(T [`−1])

)
for ` ≥ 1.

So, T [0], T [1], T [2], . . . is a sequence of rooted trees or forests of rooted trees starting with T where
in each step all the leaves together with their parents are removed from the present tree or forest
until we reach the empty graph. Note, that when starting with a tree the sequence generated
may also contain forests.

Lemma 2.1. Let T be a rooted tree. Then

∞⋃
`=0

leaf
(
T [`]
)

is a maximum independent set of T .

Proof. Let T be a rooted tree or forest of rooted trees. We first show that there is always a
maximum independent set of T which contains leaf(T ). To see this choose an arbitrary maximum
independent set A of T . If A does not contain a leaf ν then it has to contain its parent p(ν).
However, then also (A\{p(ν)})∪{ν} is a maximum independent set of T which now contains the
leaf ν. Iterating this process implies the existence of a maximum independent set of T containing
leaf(T ).
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Further, a maximum independent set containing leaf(T ) cannot contain any vertex of p(leaf(T ))
and hence consists of the union of leaf(T [0]) and a maximum independent set of T [1]. Applying
the previous argument to T [1] and using induction implies the assertion.

Subsequently, we call the maximum independent set of a rooted tree constructed in Lemma
2.1 the layered independent set.

A result of Holmgren and Janson [17]. Recalling notions from Holmgren and Janson [17] a
functional of trees is a real-valued function of trees. For a rooted tree T and a vertex v ∈ T the
fringe tree T (v) is the subtree rooted at v ∈ T which consists of all descendants of v in T . For a
functional f of rooted trees we define

F (T ) = F (T ; f) :=
∑
v∈T

f(T (v)). (3)

Corollary 1.15 in [17] states that for a functional f with the growth condition f(T ) = O(|T |α) for
some α < 1

2 and the random binary search tree Tn we have E[F (Tn)] ∼ µFn, Var(F (Tn)) ∼ σ2
Fn as

n→∞, and that F (Tn), after normalization, is asymptotically normal distributed. The constant
µF is given by

µF =

∞∑
k=1

2E[f(Tk)]

(k + 1)(k + 2)
. (4)

Note that in (1.25) in [17] also an expression for σ2
F is given. A similar result also holds for the

random recursive tree Λn, where the corresponding constant µ̂F is given by

µ̂F =

∞∑
k=1

E[f(Λk)]

k(k + 1)
. (5)

Further note that the proofs in [17] also imply that E[F (Tn)] = µFn+ O(1) and that E[F (Λn)] =
µ̂Fn+ O(1) under the stronger growth assumption that f(T ) = O(1).

Putting things together now implies Theorems 1.1 and 1.2:

Proof of Theorem 1.1 and Theorem 1.2. Note that the independence number of a rooted tree can
be covered as a function F in (3) as follows. We set f as the indicator function

f(T ) :=

{
1, if the root of T is contained in the layered independent set of T,
0, otherwise.

The structure of the layered independent set in Lemma 2.1 implies that any vertex v ∈ T is con-
tained in the layered independent set of T if and only if it is contained in the layered independent
set of T (v).

Hence, the independence number of T is given by F (T ) =
∑
v∈T f(T (v)) as in (3). This

implies that In = F (Tn) and În = F (Λn) in distribution. We have f(T ) = O(1). Hence, Corollary
1.15 of Holmgren and Janson [17] implies the assertions of Theorem 1.1 and Theorem 1.2 where
σ, σ̂ > 0 follows from numerical computation (see Remark 1.6(b)) and only the constants µ and
µ̂ need to be identified. In view of (4) and (5) we need to find E[f(Tk)] and E[f(Λk)].

For the random recursive tree T note that T can be cut into two trees by removing the edge
between the root vertex labelled 1 and the vertex labelled 2. We denote the two resulting trees by
T1 and T2. Now, the root of T is contained in the layered independent set of T if and only if the
root of T1 is contained in the layered independent set of T1 and the root of T2 is not contained
in the layered independent set of T2. Now, the decomposition property of the random recursive
tree mentioned in the introduction implies that with p̂n = E[f(Λn)] we have the recurrence

p̂n =
1

n− 1

n−1∑
j=1

(1− p̂j)p̂n−j , n ≥ 2, (6)
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with initial condition p̂1 := 1. Furthermore, for the constant µ̂ in Theorem 1.2 we have the
representation

µ̂ =

∞∑
k=1

p̂k
k(k + 1)

. (7)

Now, to find the integral expression for µ̂ in (2) consider the generating function

P̂ (z) :=
∑
k≥1

p̂kz
k.

From (6) and the initial conditions we obtain

zP̂ ′(z) = −P̂ (z)2 +
1

1− z
P̂ (z).

This Riccati equation can be solved by standard methods: We define Q̂(z) as P̂ (z) = zQ̂′(z)/Q̂(z)
and obtain

Q̂′′(z) =
1

1− z
Q̂′(z)

which implies Q̂′(z) = (1− z)−1 and thus Q̂(z) = − log(1− z) + c with a constant c ∈ R. Hence,
we obtain

P̂ (z) =
z

(1− z)(− log(1− z) + c)

and the initial condition P̂ ′(0) = 1 yields c = 1. Now we obtain

µ̂ =

∞∑
k=1

p̂k
k(k + 1)

=

∫ 1

0

∫ t

0

1

(1− z)(1− log(1− z))
dzdt

=

∫ 1

0

∫ 1

z

1

(1− z)(1− log(1− z))
dtdz

=

∫ 1

0

1

(1− log(1− z))
dz,

which, after substitution, is the expression in (2) for the Euler–Gompertz constant. This concludes
the proof of Theorem 1.2.

For the binary search tree case note that the root of the tree T is contained in its layered
independent set if and only if both children v` and vr of the root are not contained in the layered
independent set of T (v`) and T (vr) respectively. Now, the decomposition property of the random
binary search tree mentioned in the introduction implies that with pk = E[f(Tk)] we have the
relation

pn :=
1

n

n−1∑
j=0

(1− pj)(1− pn−1−j), n ≥ 1, (8)

with initial value p0 := 0 and for µ in Theorem 1.1 that

µ =
∞∑
k=0

2pk
(k + 1)(k + 2)

. (9)

Now, a similar derivation as for the previous case implies the integral representation for µ in (1). �
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3 Domination number

In this section we will see that we again can apply Corollary 1.15 in [17] (on normal limit laws for
the number of fringe trees) to deduce normal limit laws for the domination number in the case
of random binary search trees and random recursive trees. Note that the domination number is
not directly related to the independence number; in particular it is not an affine function of the
independence number.

Proof of Theorem 1.4. Let T be a rooted tree with n vertices and let S be a minimum size
dominating set of T and let D(T ) := |S| be its size. In order to analyze the domination number we
introduce the following descriptions of so-called root-dependent and root-independent dominating
sets. Let r be the root vertex of T . We say that a subset of the vertices of T \r is a root-dependent
dominating set if it is a minimum dominating set of T \r of size D(T )−1 (i.e., the dominating set
becomes strictly smaller when the root is left out). If this is not possible, i.e., D(T \r) > D(T )−1
we say that a minimum dominating set of the tree T is a root-independent dominating set.

Let T be a rooted tree, with m children i = 1, 2, . . . ,m, of the root r. Observe that the
domination number D(T ) is bounded from above by D(T1) + · · ·+D(Tm) + 1 (we dominate each
tree separately and then add the root), and from below by D(T1) + · · · + D(Tm) − m + 1 (we
add the root and manage to dominate each subtree minus its root by using a root-dependent
dominating set).

It is now clear that we can construct a minimum dominating set S of T so that v ∈ S, if and
only if, v is contained in a root-independent dominating set of T (v) except for maybe the root
vertex r.

Indeed, if we have a minimum dominating set S with a vertex v 6= r (not equal to the root
vertex of T ) that is not contained in S and T (v) has a root-independent dominating set containing
v, then all the vertices of S from T (v) form a dominating set of T (v) \ v. However, since T (v) \ v
has no root-dependent dominating set, this implies that this set is also a dominating set of T (v).
Thus, it can be replaced by the root-independent dominating set of T (v) which contains v without
increasing the cardinality of S.

On the other hand, if S contains a vertex v 6= r that is not contained in a root-independent
dominating set of T (v) it could either be because no root-independent dominating set exists or
because every root-independent dominating set excludes v. We now show that in both cases we
can again modify S without increasing the size.

In the first case, that is, if no such set exists, i.e., we have a root-dependent dominating set of
T (v) \ v, we could remove v from S and replace it with its parent and then replace elements of S
coming from T (v) \ v with a root-dependent dominating set of T (v) \ v. This does not increase
the size of S and it is still dominating.

In the second case, that is, if T (v) has a root-independent dominating set, but no root-
independent dominating set of T (v) contains v, then we could replace v with its parent, and use
the root-independent dominating set on T (v) instead (since no root-independent dominating set
of T (v) contained v, it must be inefficient to include v in S if we only wanted to dominate T (v)).

We can now do this construction inductively ending at the root r (where we cannot ”push
up” our dominating set anymore). The root r will be included if any child of the root has
a corresponding subtree with a root-dependent dominating set or if all of these subtrees have
root-independent dominating sets which all exclude their root (we call this the Property A).

Thus, the domination number of a rooted tree T can be covered as a function F in (3) as
follows. For every vertex v 6= r we set f as the indicator function

fdom(T (v)) :=

{
1, if v is contained in a root-independent dominating set of T (v),
0, otherwise,

whereas for the root vertex r with subtree T (r) = T (the whole tree) we set f as the indicator
function

fdom(T (r)) :=

{
1, if T (r) satisfies Property A,
0, otherwise.
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Hence, the domination number of T is given by Fdom(T ) =
∑
v∈T fdom(T (v)) as in (3). This

implies that the domination numbers Dn := D(Tn) = Fdom(Tn) and D̂n := D(Λn) = Fdom(Λn)
in distribution. We have fdom(T (v)) = O(1). Hence, Corollary 1.15 of Holmgren and Janson [17]
implies the assertions of Theorem 1.4. �

4 Clique cover number

Computing the clique cover number, see Remark 1.6(c), of a general graph is NP-hard [21], and
it is also NP-hard to approximate it up to a factor n1−ε for any ε > 0 [34]. However, it is well
known that for triangle-free graphs, in particular trees, the clique cover number coincides with
the independence number on trees, see [12]. Hence, the clique cover number of random binary
search trees and random recursive trees is covered by Theorems 1.1 and 1.2. However, in this
section we give a direct proof of Theorems 1.1 and 1.2 for the clique cover number to show that
this parameter can also be captured by the fringe tree representation and Corollary 1.15 in [17].

Proof: For a tree T , consider T (v) with root v and subtrees T1, . . . , Tk with corresponding
roots v1, . . . , vk that are the children of v. For such a tree T (v), let Ev be the indicator event that
there exists a subtree Ti and an optimal clique coloring of the vertices of Ti (that is, a coloring
using a minimal number C(Ti) of colors, so that every edge of the complement of Ti is such that
its incident vertices get different colors) such that vi is the only vertex with color 1 in Ti. We
then set f as the indicator function

fcc(T (v)) :=

{
0, if Ev holds,
1, otherwise.

We show now that the clique cover number of T is equal to the number of vertices that were
assigned 1. Indeed, we will show that there exists an optimal clique coloring which uses that
number of colors. This coloring will be constructed inductively over all layers bottom up. More-
over, we will simultaneously prove by induction that our coloring indeed is proper and optimal.
The deepest layer contains the set of leaves. Every leaf is assigned 1 under f since there are
no subtrees of the leaves. Clearly all leaves are adjacent in the complement, so the set of leaves
forms a clique in the complement, and thus all leaves must have different colors. The base case is
satisfied. Now, suppose inductively that for a layer ` with vertices u1, . . . , uj` ,

⋃j`
i=1 Fi is optimally

colored (optimal in the sense of the clique cover number), where Fi is the forest corresponding to
the union of subtrees (at level ` − 1) pending from vertex ui. Now, we color the ui’s as follows:
assume that for Fi say t colors are used. Shift these t colors to the set {1, . . . , t} and then try
all possible permutations of {1, . . . , t} to check whether there exists a permutation such that Eui

holds. If there is a permutation such that f(T (ui)) evaluates to 0, assign to ui the same color
before the shift of the colors that was used for the root that was assigned color 1 after shifting and
permuting colors. Otherwise, assign to ui a color which was not used yet. We have to show now
that this coloring of u1, . . . , uj` gives a proper and optimal coloring of

⋃j`
i=1 T (ui). First, we show

that it is proper. Note that the T (ui)’s are all colored properly by definition of the color of ui and
the induction hypothesis which implies that any two vertices k1, k2 from different trees in Fi have
different colors. Moreover, again by induction hypothesis, any two vertices k1, k2 from different
forests Fi have also different colors. Thus, it suffices to show that all ui’s are colored differently
since the subgraph induced by these vertices form a clique in the complement. However, this is
clear since the colors of the ui’s either come from Fi or are entirely new colors. Thus, the coloring
is indeed proper. To show that the coloring is optimal, first note that the clique cover number is
monotone under adding vertices: if two vertices need to be assigned different colors in a subtree
(subforest), they still need to be assigned different colors after adding a new vertex. If a vertex
uj is assigned 0, then no new color is used for such a vertex, and this coloring remains optimal.
If a vertex uj is assigned 1, then note that uj must obtain a color different from all other vertices
except for possibly those that are roots of the pending subtree (since uj is adjacent to all of them
in the complement). If there were a coloring assigning uj the same color as the root of a pending
subtree (and no other vertex of the subtree), then after permuting the colors one could assign to
such a root color 1, and to no other vertex in the subtrees of T (uj) has color 1, and hence uj
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would be assigned 0, contradicting this possibility. Hence uj must be assigned a new color, and
the coloring remains optimal.

Hence, the clique cover number of T is given by Fcc(T ) =
∑
v∈T fcc(T (v)) as in (3). This

implies that the clique cover numbers Cn := C(Tn) = Fcc(Tn) and Ĉn := C(Λn) = Fcc(Λn) in
distribution. We have fcc(T (v)) = O(1). Hence, Corollary 1.15 of Holmgren and Janson [17]
implies the assertions of Theorems 1.1 and 1.2. �

Acknowledgement. The results of the present note were obtained during the Twelfth Annual
Workshop on Probability and Combinatorics at McGill University’s Bellairs Research Institute.
The authors thank the participants, in particular Luc Devroye and Remco van der Hofstad, for
helpful discussions on the present problem. The hospitality and support of the institute is also
acknowledged. When later also discussing our results with Stephan Wagner he told us that he
too together with his PhD student Kenneth Dadedzi independently has shown results similar of
our Theorems 1.1-1.2, see [8].

References

[1] F. Araujo, J. Farinha, P. Domingues, G. C. Silaghi and D. Kondo, A maximum independent
set approach for collusion detection in voting pools, J. Parallel Distrib. Comp. 71 (2011),
1356–1366.

[2] B. Baker, Approximation algorithms for NP-complete problems on planar graphs, Journal
of the ACM 41 (1980), no. 1, 153–180.

[3] C. Bazgan, B. Escoffier and V. Th. Paschos, Completeness in standard and differential ap-
proximation classes: Poly-(D)APX- and (D)PTAS-completeness, Theoretical Computer Sci-
ence 339 (2005), no. 2-3, 272–292.

[4] B. Bollobás, The Independence Ratio of Regular Graphs, Proc. Amer. Math. Soc. 83 (1981)
433–436.

[5] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo and P. Stetsyuk, Finding maximum inde-
pendent sets in graphs arising from coding theory, Proc. of 2002 Symposium on Applied
Computing, ACM, 542–546.

[6] H. Chen and J. Jost, Minimum vertex covers and the spectrum of the normalized Laplacian
on trees, Linear Algebra Appl. 437 (2012), no. 4, 1089–1101.

[7] E. Cockayne, S. Goodman and S. Hedetniemi, A linear algorithm for the domination number
of a tree, Information Processing Letters 4 (1975), no. 2, 41–44.

[8] K. Dadedzi, Analysis of Tree Spectra, PhD Dissertation, Stellenbosch University, December
2018.

[9] L. Devroye, Limit laws for sums of functions of subtrees of random binary search trees, SIAM
J. Computing 32 (2003), 152–171.

[10] J.F. Fink and M.S. Jacobson, n-domination in graphs, Graph Theory with Applications to
Algorithms and Computer Science, Kalamazoo, Mich., 1984, Wiley (1985), 283–300.

[11] F. V. Fomin, F. Grandoni and D. Kratsch, A measure & conquer approach for the analysis
of exact algorithms, Journal of the ACM 56 (2009), no. 5, 25:1–32.

[12] W. Goddard, S.M. Hedetniemi and S.T. Hedetniemi, Eternal security in graphs, Journal of
Combinatorial Mathematics and Combinatorial Computing 52 (2005), 160–180.

[13] M. Grohe, Local tree-width, excluded minors, and approximation algorithms, Combinatorica
23 (2003), no. 4, 613–632.

[14] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Opti-
mization, Algorithms and Combinatorics, 2, Springer, 1988.

9



[15] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs,
vol. 208 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker,
New York, NY, USA, 1998.

[16] T. W. Haynes, S. T. Hedetniemi,and P. J. Slater, Eds., Domination in Graphs, vol. 209 of
Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York,
NY, USA, 1998.

[17] C. Holmgren and S. Janson, Limit laws for functions of fringe trees for binary search trees
and random recursive trees. Electron. J. Probab. 20 (2015), no. 4, 1–51.

[18] S. T. Hedetniemi and R. C. Laskar, Bibliography on domination in graphs and some basic
definitions of domination parameters, Discrete Mathematics 86 (1990) no. 1–3, 257–277.

[19] H.-K. Hwang and R. Neininger, Phase change of limit laws in the quicksort recurrence under
varying toll functions, SIAM J. Computing 31 (2002), 1687–1722.

[20] C. Joo, X. Lin, J. Ryu and N.B. Shroff, Distributed greedy approximation to maximum
weight independent set for scheduling with fading channels, IEEE/ACM Trans. Netw. 24
(2016), 1476–1488.

[21] R. Karp, Reducibility among combinatorial problems, in Miller, R.E., Thatcher, J.W. (eds.),
Proc. of a Symposium on the Complexity of Computer Computations (1972), Plenum press,
85–103.

[22] D.E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and Searching. 2nd ed.
Addison-Wesley, 1998.

[23] D. Lokshtanov, M. Vatshelle and Y. Villanger, Independent sets in P5-free graphs in poly-
nomial time, SODA (Symposium on Discrete Algorithms) (2014), 570–581.

[24] T. Milenkovic, V. Memisevic, A. Bonato and N. Przulj, Dominating biological networks,
PLoS ONE 6(8): e23016.

[25] X. Mingyu and H. Nagamochi, Confining sets and avoiding bottleneck cases: A simple
maximum independent set algorithm in degree-3 graphs, Theoretical Computer Science 469
(2013), 92–104.

[26] X. Mingyu and H. Nagamochi, Exact algorithms for maximum independent set, Information
and Computation 255 (2017), 126–146.

[27] G.J. Minty, On maximal independent sets of vertices in claw-free graphs, Journal of Combi-
natorial Theory, Series B 28 (1980), no. 3, 284–304.

[28] R. Raz and S. Safra, A sub-constant error-probability low-degree test, and sub-constant error-
probability PCP characterization of NP, 29th Symposium on Theory of Computing (STOC)
(1997), ACM, 475–484.

[29] J.M. Robson, Algorithms for maximum independent sets, J. Algorithms 7 (1986), 425–440.

[30] J.M.M. van Rooij, J. Nederlof and T.C. van Dijk, Inclusion/Exclusion Meets Measure and
Conquer: Exact Algorithms for Counting Dominating Sets, Proc. 17th Annual European
Symposium on Algorithms (ESA) (2009), Lecture Notes in Computer Science, 5757, Springer,
554–565.

[31] R.T. Smythe and H.M. Mahmoud, A survey of recursive trees, Teor. Ĭmov̄ır. Mat. Stat. 51
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