COUNTING PHYLOGENETIC NETWORKS WITH THE COMPONENT GRAPH METHOD (based on joint work with Y.-S. Chang, E.-Y. Huang, H. Liu, M. Wallner, G.-R. Yu, L. Zhang)

Michael Fuchs

Department of Mathematical Sciences National Chengchi University

August 22nd, 2023

< □ > < □ > < □ > < □ > < □ > < □ >

 $X \ldots$ a finite set.

3

イロン イヨン イヨン

 $X \ \ldots$ a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:

э

 $X \ldots$ a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:

(a) *root: in-degree* 0 *and out-degree* 1;

э

 $X \ldots$ a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:

(a) root: in-degree 0 and out-degree 1;

(b) *leaves:* in-degree 1 and out-degree 0; bijectively labeled by X;

э

 $X \ldots$ a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:

(a) root: in-degree 0 and out-degree 1;

- (b) *leaves:* in-degree 1 and out-degree 0; bijectively labeled by X;
- (c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

 $X \ldots$ a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:

(a) *root*: *in-degree* 0 *and out-degree* 1;

- (b) *leaves:* in-degree 1 and out-degree 0; bijectively labeled by X;
- (c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.

2/18

 $X \ldots$ a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:

(a) *root*: *in-degree* 0 *and out-degree* 1;

- (b) *leaves:* in-degree 1 and out-degree 0; bijectively labeled by X;
- (c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.

They are used to model reticulate evolution which contains reticulation events such as lateral gene transfer or hybridization.

3

Michael Fuchs (NCCU)

Component Graph Method

August 22nd, 2023

Michael Fuchs (NCCU)

Component Graph Method

August 22nd, 2023

3/18

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

э

イロト 不得下 イヨト イヨト

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

Examples:

< □ > < □ > < □ > < □ > < □ > < □ >

э

TC-Networks

Definition

A phylogenetic network is called <u>tree-child network</u> if every non-leaf node has at least one child which is not a reticulation node.

Examples:

Figure: (a) is not a tc-network whereas (b) is a tc-network.

Michael Fuchs (NCCU)

Component Graph Method

< ロ > < 同 > < 回 > < 回 > < 回 > <

Method of Component Graphs

Cardona & Zhang (2020) used component graphs:

э

イロト イポト イヨト イヨト

Method of Component Graphs

Cardona & Zhang (2020) used component graphs:

(b)

3 N 3

Counting TC-Networks

 $k_m \ldots \#$ of component graphs with m nodes.

Proposition

 k_m satisfies $k_m = \sum_{s=1}^{m-1} k_{m,s}$ where $k_{1,1} = 1$ and

$$k_{m,s} = \sum_{1 \le t \le m-1-s} \binom{m}{s} \sum_{0 \le \ell \le t} (-1)^{\ell} \binom{t}{\ell} \binom{m-s-\ell+1}{2}^{s} k_{m-s,t}.$$

6/18

Counting TC-Networks

 $k_m \ldots \#$ of component graphs with m nodes.

Proposition

Michael Fuchs (NCCU)

 k_m satisfies $k_m = \sum_{s=1}^{m-1} k_{m,s}$ where $k_{1,1} = 1$ and

$$k_{m,s} = \sum_{1 \le t \le m-1-s} \binom{m}{s} \sum_{0 \le \ell \le t} (-1)^{\ell} \binom{t}{\ell} \binom{m-s-\ell+1}{2}^{s} k_{m-s,t}.$$

 $TC_{n,k} \ldots \#$ of tc-networks with n leaves and k reticulation nodes.

Theorem (Cardona & Zhang; 2020)

$$TC_{n,k} = \frac{1}{2^{n-1-k}} \sum_{\{B_j\}_{j=1}^{k+1}} \sum_{G \in \mathcal{K}_{k+1}} \prod_{j=1}^{k+1} \frac{(2b_j + g_j - 2)!}{(b_j - 1)! \prod_{\ell=1}^{k+1} (g_{j,\ell})!}.$$

 Image: Component Graph Method

Component Graph Method

$TC_{n,k}$ for small n, k (i)

Michael Fuchs (NCCU)

Component Graph Method

August 22nd, 2023

イロト イヨト イヨト イヨト

3

$$\mathrm{TC}_{n,k}$$
 for small n,k (i)

Lemma

In any tc-network: $k \leq n - 1$.

イロト イヨト イヨト イヨト

3

$\mathrm{TC}_{n,k}$ for small n,k (i)

Lemma

In any tc-network: $k \leq n - 1$.

Cardona & Zhang:

$k \setminus n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

(日)

э

$\mathrm{TC}_{n,k}$ for small n,k (i)

Lemma

In any tc-network: $k \leq n - 1$.

Cardona & Zhang:

$k \setminus n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Computation becomes more and more cumbersome because the number of component graphs increases rapidly!

Michael Fuchs (NCCU)

Component Graph Method

August 22nd, 2023

$\mathrm{TC}_{n,k}$ for small n, k (ii)

Pons & Batle (2021) found a recursive formula for $TC_{n,k}$ based on a (still unproven) conjecture.

э

(日)

$TC_{n,k}$ for small n, k (ii)

Pons & Batle (2021) found a recursive formula for $TC_{n,k}$ based on a (still unproven) conjecture.

Chang & Liu & F. & Wallner & Yu (2023+) recently also found the following recursive formula:

$$TC_{n,k} = \frac{n!}{2^{n-1-k}} w_{n-1,k},$$

where

$$\omega_{n,k} = \sum_{m \ge 1} b_{n,k,m}$$

with $b_{n,km}$ given recursively by:

$$b_{n,k,m} = \sum_{j=1}^{m} b_{n-1,k,j} + (n+m+k-2) \sum_{j=1}^{m} b_{n-1,k-1,j}.$$

Michael Fuchs (NCCU)

Formulas for small \boldsymbol{k}

Theorem (Cardona & Zhang; 2020) We have,

$$\mathrm{TC}_{n,1} = \frac{n!(2n)!}{2^n n!} - 2^{n-1} n!.$$

and

$$TC_{n,2} = \frac{n!}{2^n} \sum_{j=1}^{n-2} {2j \choose j} {2n-2j \choose n-j} \frac{j(2j+1)(2n-j-1)}{2n-2j-1} + n(n-1)n! 2^{n-3} - \frac{(2n-1)!n}{3 \cdot 2^{n-1}(n-2)!} = n! \left(\frac{n(n+1)(n-1)(3n+2)}{6(2n+1)2^n} {2n+2 \choose n+1} - n(n-1)2^n \right).$$

Michael Fuchs (NCCU)

3

9/18

イロト イヨト イヨト イヨト

Formulas for small k

Theorem (Cardona & Zhang; 2020) We have,

$$\mathrm{TC}_{n,1} = \frac{n!(2n)!}{2^n n!} - 2^{n-1} n!.$$

and

$$TC_{n,2} = \frac{n!}{2^n} \sum_{j=1}^{n-2} \binom{2j}{j} \binom{2n-2j}{n-j} \frac{j(2j+1)(2n-j-1)}{2n-2j-1} + n(n-1)n! 2^{n-3} - \frac{(2n-1)!n}{3 \cdot 2^{n-1}(n-2)!} = n! \left(\frac{n(n+1)(n-1)(3n+2)}{6(2n+1)2^n} \binom{2n+2}{n+1} - n(n-1)2^n \right).$$

En-Yu Huang (master student; 2022) derived a formula for k = 3.

Michael Fuchs (NCCU)

3

Component Graphs for k = 3

Proposition

Let $S_{n,k}$ be the number of tc-networks arising from the star-component graph. Then,

$$S_{n,k} \sim \frac{2^{k-1}\sqrt{2}}{k!} \left(\frac{2}{e}\right)^n n^{n+2k-1}.$$

(日)

э

Proposition

Let $S_{n,k}$ be the number of tc-networks arising from the star-component graph. Then,

$$S_{n,k} \sim \frac{2^{k-1}\sqrt{2}}{k!} \left(\frac{2}{e}\right)^n n^{n+2k-1}.$$

In fact, as $n \to \infty$, $S_{n,k} \sim TC_{n,k}$.

3

Proposition

Let $S_{n,k}$ be the number of tc-networks arising from the star-component graph. Then,

$$S_{n,k} \sim \frac{2^{k-1}\sqrt{2}}{k!} \left(\frac{2}{e}\right)^n n^{n+2k-1}.$$

In fact, as
$$n \to \infty$$
, $S_{n,k} \sim \mathrm{TC}_{n,k}$.

Theorem (F. & Huang & Yu; 2022) As $n \to \infty$, $\operatorname{TC}_{n,k} \sim \frac{2^{k-1}\sqrt{2}}{k!} \left(\frac{2}{e}\right)^n n^{n+2k-1}$.

3

イロト 不得 トイヨト イヨト

Proposition

Let $S_{n,k}$ be the number of tc-networks arising from the star-component graph. Then,

$$S_{n,k} \sim \frac{2^{k-1}\sqrt{2}}{k!} \left(\frac{2}{e}\right)^n n^{n+2k-1}.$$

In fact, as
$$n \to \infty$$
, $S_{n,k} \sim \mathrm{TC}_{n,k}$.

Theorem (F. & Huang & Yu; 2022) As $n \to \infty$, $\operatorname{TC}_{n,k} \sim \frac{2^{k-1}\sqrt{2}}{k!} \left(\frac{2}{e}\right)^n n^{n+2k-1}$.

3

イロト 不得 トイヨト イヨト

Galled Networks

Definition

A phylogenetic network is called a galled network if all its reticulation nodes are in a tree cycle.

э

(日)

Galled Networks

Definition

A phylogenetic network is called a galled network if all its reticulation nodes are in a tree cycle.

Examples:

э

< □ > < □ > < □ > < □ > < □ > < □ >

Galled Networks

Definition

A phylogenetic network is called a galled network if all its reticulation nodes are in a tree cycle.

Examples:

Figure: (a) is not a galled network whereas (b) is a galled network.

э

Component Graphs for Galled Networks

(b)

Michael Fuchs (NCCU)

Component Graph Method

August 22nd, 2023

イロト イヨト イヨト

2

Component Graphs for Galled Networks

Theorem (Gunawan & Rathin & Zhang; 2022)

$$\mathrm{GN}_n = \sum_{\mathcal{T}} \prod_{v \in \mathcal{I}(\mathcal{T})} \sum_{j=c_{\mathrm{nlf}}(v)}^{c(v)} {c_{\mathrm{lf}}(v) \choose j - c_{\mathrm{nlf}}(v)} N_{c(v)+1}^{(j)}.$$

Michael Fuchs (NCCU)

August 22nd, 2023

2

13/18

< □ > < □ > < □ > < □ > < □ >

Asymptotics of Galled Networks (i)

We have,

$$OGN_{n,k} = \binom{n}{k} N_{n+1}^{(k)},$$

where

$$\begin{split} N_n^{(k)} = & (n+k-3)N_n^{(k-1)} + (k-1)N_n^{(k-2)} \\ & + \frac{1}{2}\sum_{1 \leq d \leq k-1} \binom{k-1}{d}(2d-1)!! \left(N_{n-d}^{(k-1-d)} - N_{n-d+1}^{(k-1-d)}\right). \end{split}$$

3

(日)

Asymptotics of Galled Networks (i)

We have,

$$OGN_{n,k} = \binom{n}{k} N_{n+1}^{(k)},$$

where

$$\begin{split} N_n^{(k)} = & (n+k-3)N_n^{(k-1)} + (k-1)N_n^{(k-2)} \\ & + \frac{1}{2}\sum_{1 \le d \le k-1} \binom{k-1}{d} (2d-1)!! \left(N_{n-d}^{(k-1-d)} - N_{n-d+1}^{(k-1-d)}\right). \end{split}$$

Theorem (F. & Yu & Zhang; 2022) As $n \to \infty$, $OGN_n \sim \frac{\sqrt{2e\sqrt{e}}}{4} n^{-1} \left(\frac{8}{e^2}\right)^n n^{2n}$.

э

イロト イボト イヨト イヨト

Asymptotics of Galled Networks (ii)

 $GN_n \ldots \#$ of galled networks with n leaves.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Asymptotics of Galled Networks (ii)

 $GN_n \ldots \#$ of galled networks with n leaves.

The following component graphs are dominating:

э

15 / 18

Asymptotics of Galled Networks (ii)

 $GN_n \ldots \#$ of galled networks with n leaves.

The following component graphs are dominating:

Theorem (F. & Yu & Zhang; 2022)

As $n \to \infty$,

$$GN_n \sim \frac{\sqrt{2e\sqrt[4]{e}}}{4} n^{-1} \left(\frac{8}{e^2}\right)^n n^{2n}.$$

< ∃⇒

15 / 18

Number of Reticulation Nodes

 $X_n \ldots$ number of reticulation nodes which are not followed by a leaf; $Y_n \ldots$ total number of reticulation nodes.

3

(日)

Number of Reticulation Nodes

 X_n ... number of reticulation nodes which are not followed by a leaf; Y_n ... total number of reticulation nodes.

Theorem (F. & Yu & Zhang; 2022) We have. $(X_n, n - Y_n) \xrightarrow{d} (X, Y),$ where for j > 0 and k > -j. $\mathbb{P}(X=j,Y=k) = \frac{e^{-i/8}}{16^{j}i!} [z^{j-k}] e^{1/(2z)} \left(1 + 2z + 3z^{2}\right)^{j}.$

16/18

Number of Reticulation Nodes

 $X_n \ldots$ number of reticulation nodes which are not followed by a leaf; $Y_n \ldots$ total number of reticulation nodes.

Theorem (F. & Yu & Zhang; 2022) We have, $(X_n, n - Y_n) \xrightarrow{d} (X, Y),$ where for $j \ge 0$ and $k \ge -j$, $\mathbb{P}(X = j, Y = k) = \frac{e^{-7/8}}{16^j j!} [z^{j-k}] e^{1/(2z)} (1 + 2z + 3z^2)^j.$

E.g., as a consequence,

$$\mathbb{E}(Y_n) = n - \frac{3}{8} + o(1) \quad \text{and} \quad \operatorname{Var}(Y_n) = \frac{3}{4} + o(1).$$

Nuchae	I Fuche	
witchae	I I UCIIS	
		· · · · · ·

3

イロン イヨン イヨン

• The component graph method can also be used to find formulas of the numbers of galled networks for small k and the first-order asymptotics of these numbers with fixed k.

イロト 不得下 イヨト イヨト

- The component graph method can also be used to find formulas of the numbers of galled networks for small k and the first-order asymptotics of these numbers with fixed k.
- The component graph of reticulation-visible networks is a tree-child network. This can be used to give a formula for the number of reticulation-visible networks with *n* leaves.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- The component graph method can also be used to find formulas of the numbers of galled networks for small k and the first-order asymptotics of these numbers with fixed k.
- The component graph of reticulation-visible networks is a tree-child network. This can be used to give a formula for the number of reticulation-visible networks with *n* leaves.
- The formula for reticulation-visible networks can be used to give formulas for small k; it can also be used to obtain the first-order asymptotics for fixed k.

- The component graph method can also be used to find formulas of the numbers of galled networks for small k and the first-order asymptotics of these numbers with fixed k.
- The component graph of reticulation-visible networks is a tree-child network. This can be used to give a formula for the number of reticulation-visible networks with *n* leaves.
- The formula for reticulation-visible networks can be used to give formulas for small k; it can also be used to obtain the first-order asymptotics for fixed k.
- What is the asymptotics of the number of reticulation-visible networks with *n* leaves? Does it contain a stretched example?

(日)

Some References

- 1. G. Cardona and L. Zhang (2020). Counting and enumerating tree-child networks and their subclasses, *J. Comput. System Sci.*, **114**, 84–104.
- 2. Y.-S. Chang, M. Fuchs, H. Liu, M. Wallner, G.-R. Yu. Enumerative and distributional results for *d*-combining tree-child networks, 48 pages, submitted.
- M. Fuchs, E.-Y. Huang, G.-R. Yu (2022). Counting phylogenetic networks with few reticulation vertices: a second approach, *Discrete Appl. Math.*, 320, 140–149.
- M. Fuchs, G.-R. Yu, L. Zhang (2022). Asymptotic enumeration and distributional properties of galled networks, *J. Comb. Theory Ser. A.*, 189, 105599.
- 5. A. D. M. Gunawan, J. Rathin, L. Zhang (2020). Counting and enumerating galled networks, *Discrete Appl. Math.*, **283**, 644–654.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A