Counting Phylogenetic Networks with the Component Graph Method

(based on joint work with Y.-S. Chang, E.-Y. Huang, H. Liu, M.

Wallner, G.-R. Yu, L. Zhang)

Michael Fuchs

Department of Mathematical Sciences
National Chengchi University

August 22nd, 2023

What is a (Binary) Phylogenetic Network?

X ... a finite set.

What is a (Binary) Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:

What is a (Binary) Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:
(a) root: in-degree 0 and out-degree 1;

What is a (Binary) Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;

What is a (Binary) Phylogenetic Network?

$X \ldots$ a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;
(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

What is a (Binary) Phylogenetic Network?

$X \ldots$ a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;
(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.

What is a (Binary) Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG with the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;
(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.
They are used to model reticulate evolution which contains reticulation events such as lateral gene transfer or hybridization.

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

Examples:

(a)

(b)

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

Examples:

Figure: (a) is not a tc-network whereas (b) is a tc-network.

Method of Component Graphs

Cardona \& Zhang (2020) used component graphs:

Method of Component Graphs

Cardona \& Zhang (2020) used component graphs:

(b)

Counting TC-Networks

$k_{m} \ldots$ \# of component graphs with m nodes.

Proposition

k_{m} satisfies $k_{m}=\sum_{s=1}^{m-1} k_{m, s}$ where $k_{1,1}=1$ and

$$
k_{m, s}=\sum_{1 \leq t \leq m-1-s}\binom{m}{s} \sum_{0 \leq \ell \leq t}(-1)^{\ell}\binom{t}{\ell}\binom{m-s-\ell+1}{2}^{s} k_{m-s, t}
$$

Counting TC-Networks

$k_{m} \ldots$ \# of component graphs with m nodes.

Proposition

k_{m} satisfies $k_{m}=\sum_{s=1}^{m-1} k_{m, s}$ where $k_{1,1}=1$ and

$$
k_{m, s}=\sum_{1 \leq t \leq m-1-s}\binom{m}{s} \sum_{0 \leq \ell \leq t}(-1)^{\ell}\binom{t}{\ell}\binom{m-s-\ell+1}{2}^{s} k_{m-s, t}
$$

$\mathrm{TC}_{n, k} \ldots$ \# of tc-networks with n leaves and k reticulation nodes.
Theorem (Cardona \& Zhang; 2020)

$$
\mathrm{TC}_{n, k}=\frac{1}{2^{n-1-k}} \sum_{\left\{B_{j}\right\}_{j=1}^{k+1}} \sum_{G \in \mathcal{K}_{k+1}} \prod_{j=1}^{k+1} \frac{\left(2 b_{j}+g_{j}-2\right)!}{\left(b_{j}-1\right)!\prod_{\ell=1}^{k+1}\left(g_{j, \ell}\right)!}
$$

$\mathrm{TC}_{n, k}$ for small n, k (i)

$\mathrm{TC}_{n, k}$ for small n, k (i)

Lemma
In any tc-network: $k \leq n-1$.

$\mathrm{TC}_{n, k}$ for small n, k (i)

Lemma

In any tc-network: $k \leq n-1$.

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

$\mathrm{TC}_{n, k}$ for small n, k (i)

Lemma
In any tc-network: $k \leq n-1$.

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Computation becomes more and more cumbersome because the number of component graphs increases rapidly!

$\mathrm{TC}_{n, k}$ for small n, k (ii)

Pons \& Batle (2021) found a recursive formula for $\mathrm{TC}_{n, k}$ based on a (still unproven) conjecture.

$\mathrm{TC}_{n, k}$ for small n, k (ii)

Pons \& Batle (2021) found a recursive formula for $\mathrm{TC}_{n, k}$ based on a (still unproven) conjecture.

Chang \& Liu \& F. \& Wallner \& Yu (2023+) recently also found the following recursive formula:

$$
\mathrm{TC}_{n, k}=\frac{n!}{2^{n-1-k}} w_{n-1, k}
$$

where

$$
\omega_{n, k}=\sum_{m \geq 1} b_{n, k, m}
$$

with $b_{n, k m}$ given recursively by:

$$
b_{n, k, m}=\sum_{j=1}^{m} b_{n-1, k, j}+(n+m+k-2) \sum_{j=1}^{m} b_{n-1, k-1, j} .
$$

Formulas for small k

Theorem (Cardona \& Zhang; 2020)
We have,

$$
\mathrm{TC}_{n, 1}=\frac{n!(2 n)!}{2^{n} n!}-2^{n-1} n!
$$

and

$$
\begin{aligned}
\mathrm{TC}_{n, 2}= & \frac{n!}{2^{n}} \sum_{j=1}^{n-2}\binom{2 j}{j}\binom{2 n-2 j}{n-j} \frac{j(2 j+1)(2 n-j-1)}{2 n-2 j-1} \\
& +n(n-1) n!2^{n-3}-\frac{(2 n-1)!n}{3 \cdot 2^{n-1}(n-2)!} \\
= & n!\left(\frac{n(n+1)(n-1)(3 n+2)}{6(2 n+1) 2^{n}}\binom{2 n+2}{n+1}-n(n-1) 2^{n}\right) .
\end{aligned}
$$

Formulas for small k

Theorem (Cardona \& Zhang; 2020)
We have,

$$
\mathrm{TC}_{n, 1}=\frac{n!(2 n)!}{2^{n} n!}-2^{n-1} n!
$$

and

$$
\begin{aligned}
\mathrm{TC}_{n, 2}= & \frac{n!}{2^{n}} \sum_{j=1}^{n-2}\binom{2 j}{j}\binom{2 n-2 j}{n-j} \frac{j(2 j+1)(2 n-j-1)}{2 n-2 j-1} \\
& +n(n-1) n!2^{n-3}-\frac{(2 n-1)!n}{3 \cdot 2^{n-1}(n-2)!} \\
= & n!\left(\frac{n(n+1)(n-1)(3 n+2)}{6(2 n+1) 2^{n}}\binom{2 n+2}{n+1}-n(n-1) 2^{n}\right)
\end{aligned}
$$

En-Yu Huang (master student; 2022) derived a formula for $k=3$.

Component Graphs for $k=3$

(1)

(2)

(3)

(4)

(5)

(6)
(12)

(7)

(8)

(9)

(10)

(11)

(13)

Asymptotics of TC-Networks with fixed k

Proposition

Let $S_{n, k}$ be the number of tc-networks arising from the star-component graph. Then,

$$
S_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1} .
$$

Asymptotics of TC-Networks with fixed k

Proposition

Let $S_{n, k}$ be the number of tc-networks arising from the star-component graph. Then,

$$
S_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1} .
$$

In fact, as $n \rightarrow \infty, S_{n, k} \sim \mathrm{TC}_{n, k}$.

Asymptotics of TC-Networks with fixed k

Proposition

Let $S_{n, k}$ be the number of tc-networks arising from the star-component graph. Then,

$$
S_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1} .
$$

In fact, as $n \rightarrow \infty, S_{n, k} \sim \mathrm{TC}_{n, k}$.

Theorem (F. \& Huang \& Yu; 2022)
As $n \rightarrow \infty$,

$$
\mathrm{TC}_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1}
$$

Asymptotics of TC-Networks with fixed k

Proposition

Let $S_{n, k}$ be the number of tc-networks arising from the star-component graph. Then,

$$
S_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1} .
$$

In fact, as $n \rightarrow \infty, S_{n, k} \sim \mathrm{TC}_{n, k}$.

Theorem (F. \& Huang \& Yu; 2022)
As $n \rightarrow \infty$,

$$
\mathrm{TC}_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1}
$$

Galled Networks

Definition

A phylogenetic network is called a galled network if all its reticulation nodes are in a tree cycle.

Galled Networks

Definition

A phylogenetic network is called a galled network if all its reticulation nodes are in a tree cycle.

Examples:

(a)

(b)

Galled Networks

Definition

A phylogenetic network is called a galled network if all its reticulation nodes are in a tree cycle.

Examples:

Figure: (a) is not a galled network whereas (b) is a galled network.

Component Graphs for Galled Networks

(b)

Component Graphs for Galled Networks

(b)

Theorem (Gunawan \& Rathin \& Zhang; 2022)

$$
\mathrm{GN}_{n}=\sum_{\mathcal{T}} \prod_{v \in \mathcal{I}(\mathcal{T})} \sum_{j=c_{\mathrm{nlf}}(v)}^{c(v)}\binom{c_{\mathrm{lf}}(v)}{j-c_{\mathrm{nlf}}(v)} N_{c(v)+1}^{(j)}
$$

Asymptotics of Galled Networks (i)

We have,

$$
\mathrm{OGN}_{n, k}=\binom{n}{k} N_{n+1}^{(k)},
$$

where

$$
\begin{aligned}
N_{n}^{(k)}= & (n+k-3) N_{n}^{(k-1)}+(k-1) N_{n}^{(k-2)} \\
& +\frac{1}{2} \sum_{1 \leq d \leq k-1}\binom{k-1}{d}(2 d-1)!!\left(N_{n-d}^{(k-1-d)}-N_{n-d+1}^{(k-1-d)}\right) .
\end{aligned}
$$

Asymptotics of Galled Networks (i)

We have,

$$
\mathrm{OGN}_{n, k}=\binom{n}{k} N_{n+1}^{(k)},
$$

where

$$
\begin{aligned}
N_{n}^{(k)}= & (n+k-3) N_{n}^{(k-1)}+(k-1) N_{n}^{(k-2)} \\
& +\frac{1}{2} \sum_{1 \leq d \leq k-1}\binom{k-1}{d}(2 d-1)!!\left(N_{n-d}^{(k-1-d)}-N_{n-d+1}^{(k-1-d)}\right) .
\end{aligned}
$$

Theorem (F. \& Yu \& Zhang; 2022)
As $n \rightarrow \infty$,

$$
\mathrm{OGN}_{n} \sim \frac{\sqrt{2 e \sqrt{e}}}{4} n^{-1}\left(\frac{8}{e^{2}}\right)^{n} n^{2 n}
$$

Asymptotics of Galled Networks (ii)

$\mathrm{GN}_{n} \ldots$ \# of galled networks with n leaves.

Asymptotics of Galled Networks (ii)

$\mathrm{GN}_{n} \ldots$ \# of galled networks with n leaves.
The following component graphs are dominating:

Asymptotics of Galled Networks (ii)

$\mathrm{GN}_{n} \ldots$ \# of galled networks with n leaves.
The following component graphs are dominating:

Theorem (F. \& Yu \& Zhang; 2022)
As $n \rightarrow \infty$,

$$
\mathrm{GN}_{n} \sim \frac{\sqrt{2 e \sqrt[4]{e}}}{4} n^{-1}\left(\frac{8}{e^{2}}\right)^{n} n^{2 n}
$$

Number of Reticulation Nodes

$X_{n} \ldots$ number of reticulation nodes which are not followed by a leaf; $Y_{n} \ldots$ total number of reticulation nodes.

Number of Reticulation Nodes

$X_{n} \ldots$ number of reticulation nodes which are not followed by a leaf; $Y_{n} \ldots$ total number of reticulation nodes.

Theorem (F. \& Yu \& Zhang; 2022)
We have,

$$
\left(X_{n}, n-Y_{n}\right) \xrightarrow{d}(X, Y),
$$

where for $j \geq 0$ and $k \geq-j$,

$$
\mathbb{P}(X=j, Y=k)=\frac{e^{-7 / 8}}{16^{j} j!}\left[z^{j-k}\right] e^{1 /(2 z)}\left(1+2 z+3 z^{2}\right)^{j}
$$

Number of Reticulation Nodes

$X_{n} \ldots$ number of reticulation nodes which are not followed by a leaf; $Y_{n} \ldots$ total number of reticulation nodes.

Theorem (F. \& Yu \& Zhang; 2022)
We have,

$$
\left(X_{n}, n-Y_{n}\right) \xrightarrow{d}(X, Y),
$$

where for $j \geq 0$ and $k \geq-j$,

$$
\mathbb{P}(X=j, Y=k)=\frac{e^{-7 / 8}}{16^{j} j!}\left[z^{j-k}\right] e^{1 /(2 z)}\left(1+2 z+3 z^{2}\right)^{j}
$$

E.g., as a consequence,

$$
\mathbb{E}\left(Y_{n}\right)=n-\frac{3}{8}+o(1) \quad \text { and } \quad \operatorname{Var}\left(Y_{n}\right)=\frac{3}{4}+o(1)
$$

Work in Progress and Open Problems

Work in Progress and Open Problems

- The component graph method can also be used to find formulas of the numbers of galled networks for small k and the first-order asymptotics of these numbers with fixed k.

Work in Progress and Open Problems

- The component graph method can also be used to find formulas of the numbers of galled networks for small k and the first-order asymptotics of these numbers with fixed k.
- The component graph of reticulation-visible networks is a tree-child network. This can be used to give a formula for the number of reticulation-visible networks with n leaves.

Work in Progress and Open Problems

- The component graph method can also be used to find formulas of the numbers of galled networks for small k and the first-order asymptotics of these numbers with fixed k.
- The component graph of reticulation-visible networks is a tree-child network. This can be used to give a formula for the number of reticulation-visible networks with n leaves.
- The formula for reticulation-visible networks can be used to give formulas for small k; it can also be used to obtain the first-order asymptotics for fixed k.

Work in Progress and Open Problems

- The component graph method can also be used to find formulas of the numbers of galled networks for small k and the first-order asymptotics of these numbers with fixed k.
- The component graph of reticulation-visible networks is a tree-child network. This can be used to give a formula for the number of reticulation-visible networks with n leaves.
- The formula for reticulation-visible networks can be used to give formulas for small k; it can also be used to obtain the first-order asymptotics for fixed k.
- What is the asymptotics of the number of reticulation-visible networks with n leaves? Does it contain a stretched example?

Some References

1. G. Cardona and L. Zhang (2020). Counting and enumerating tree-child networks and their subclasses, J. Comput. System Sci., 114, 84-104.
2. Y.-S. Chang, M. Fuchs, H. Liu, M. Wallner, G.-R. Yu. Enumerative and distributional results for d-combining tree-child networks, 48 pages, submitted.
3. M. Fuchs, E.-Y. Huang, G.-R. Yu (2022). Counting phylogenetic networks with few reticulation vertices: a second approach, Discrete Appl. Math., 320, 140-149.
4. M. Fuchs, G.-R. Yu, L. Zhang (2022). Asymptotic enumeration and distributional properties of galled networks, J. Comb. Theory Ser. A., 189, 105599.
5. A. D. M. Gunawan, J. Rathin, L. Zhang (2020). Counting and enumerating galled networks, Discrete Appl. Math., 283, 644-654.
