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What is a Phylogenetic Tree?

X . . . a finite set.

A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled
by X.
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Counting Phylogenetic Trees

Tn . . . # of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with n− 1 labeled leaves.

Do the following:

(i) either attach a pendant edge with a node labeled by n to any edge,

(ii) or create a new root with one child the tree and the other the node
labeled by n.

This produces all trees of n labeled leaves.

Thus,
Tn = (2n− 3)Tn−1

and by iteration
Tn = (2n− 3)!!.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 4 / 30



Counting Phylogenetic Trees

Tn . . . # of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with n− 1 labeled leaves.

Do the following:

(i) either attach a pendant edge with a node labeled by n to any edge,

(ii) or create a new root with one child the tree and the other the node
labeled by n.

This produces all trees of n labeled leaves.

Thus,
Tn = (2n− 3)Tn−1

and by iteration
Tn = (2n− 3)!!.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 4 / 30



Counting Phylogenetic Trees

Tn . . . # of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with n− 1 labeled leaves.

Do the following:

(i) either attach a pendant edge with a node labeled by n to any edge,

(ii) or create a new root with one child the tree and the other the node
labeled by n.

This produces all trees of n labeled leaves.

Thus,
Tn = (2n− 3)Tn−1

and by iteration
Tn = (2n− 3)!!.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 4 / 30



Counting Phylogenetic Trees

Tn . . . # of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with n− 1 labeled leaves.

Do the following:

(i) either attach a pendant edge with a node labeled by n to any edge,

(ii) or create a new root with one child the tree and the other the node
labeled by n.

This produces all trees of n labeled leaves.

Thus,
Tn = (2n− 3)Tn−1

and by iteration
Tn = (2n− 3)!!.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 4 / 30



Counting Phylogenetic Trees

Tn . . . # of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with n− 1 labeled leaves.

Do the following:

(i) either attach a pendant edge with a node labeled by n to any edge,

(ii) or create a new root with one child the tree and the other the node
labeled by n.

This produces all trees of n labeled leaves.

Thus,
Tn = (2n− 3)Tn−1

and by iteration
Tn = (2n− 3)!!.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 4 / 30



Counting Phylogenetic Trees

Tn . . . # of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with n− 1 labeled leaves.

Do the following:

(i) either attach a pendant edge with a node labeled by n to any edge,

(ii) or create a new root with one child the tree and the other the node
labeled by n.

This produces all trees of n labeled leaves.

Thus,
Tn = (2n− 3)Tn−1

and by iteration
Tn = (2n− 3)!!.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 4 / 30



Counting Phylogenetic Trees

Tn . . . # of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with n− 1 labeled leaves.

Do the following:

(i) either attach a pendant edge with a node labeled by n to any edge,

(ii) or create a new root with one child the tree and the other the node
labeled by n.

This produces all trees of n labeled leaves.

Thus,
Tn = (2n− 3)Tn−1

and by iteration
Tn = (2n− 3)!!.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 4 / 30



What is a Phylogenetic Network?

X . . . a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:

(a) root: in-degree 0 and out-degree 1;

(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;

(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes)
or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.

They are used to model reticulate evolution which contains reticulation
events such as lateral gene transfer or hybridization.
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TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node
has at least one child which is not a reticulation node.

Examples:

(a)

ρ

2

1
3

(b)

ρ

4
2

1
3

Figure: (a) is not a tc-network whereas (b) is a tc-network.
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Method of Component Graphs

Cardona & Zhang (JCSS; 2020) used component graphs:

1

2

3

4

56

(a) (b)
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Counting TC-Networks

km . . . # of component graphs with m nodes.

Proposition

km satisfies km =
∑m−1

s=1 km,s where k1,1 = 1 and

km,s =
∑

1≤t≤m−1−s

(
m

s

) ∑
0≤ℓ≤t

(−1)ℓ
(
t

ℓ

)(
m− 1− s− ℓ+ d

d

)
km−s,t.

TCn,k . . . # of tc-networks with n leaves and k reticulation nodes.

Theorem (Cardona & Zhang; 2020)

TCn,k =
1

2n−1−k

∑
{Bj}k+1

j=1

∑
G∈Kk+1

k+1∏
j=1

(2bj + gj − 2)

(bj − 1)!
∏k+1

ℓ=1 (gj,ℓ)!
.
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TCn,k for small n, k

Lemma

In any tc-network: k ≤ n− 1.

Cardona & Zhang:

k \ n 2 3 4 5 6 7

1 2 21 228 2805 39330 623385
2 42 1272 30300 696600 16418430
3 2544 154500 6494400 241204950
4 309000 31534200 2068516800
5 63068400 9737380800
6 19474761600

Computation becomes more and more cumbersome because the number of
component graphs increases rapidly!
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Formulas for small k

Theorem (Cardona & Zhang; 2020)

We have,

TCn,1 =
n!(2n)!

2nn!
− 2n−1n!.

and

TCn,2 =
n!

2n

n−2∑
j=1

(
2j

j

)(
2n− 2j

n− j

)
j(2j + 1)(2n− j − 1)

2n− 2j − 1

+ n(n− 1)n!2n−3 − (2n− 1)!n

3 · 2n−1(n− 2)!

= n(n− 1)

(
3n+ 2

3
(2n− 1)!!− (2n)!!

)

.

En-Yu Huang (2022) derived a formula for k = 3.
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Component Graphs for k = 3

(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13)
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Asymptotics of TC-Networks with fixed k

Proposition

Let Sn,k be the number of tc-networks arising from the star-component
graph. Then,

Sn,k ∼ 2k−1
√
2

k!

(
2

e

)n

nn+2k−1.

In fact, as n → ∞, Sn,k ∼ TCn,k.

Theorem (F. & Huang & Yu; 2022)

As n → ∞,

TCn,k ∼ 2k−1
√
2

k!

(
2

e

)n

nn+2k−1.
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General TC-Networks (i)

TCn . . . # of tc-networks with n leaves.

Theorem (McDiarmid, Semple, Welsh; 2015)

For constants 0 < c1 < c2,

(c1n)
2n ≤ TCn ≤ (c2n)

2n.

Question: what is the exponential growth rate?

McDiarmid & Semple & Welsh (2015) also proved stochastic results.

Theorem (McDiarmid, Semple, Welsh; 2015)

(a) # of reticulation nodes ∼ n for almost all tc-networks;

(b) The number of cherries is o(n) for almost all tc-networks.
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General TC-Networks (ii)

Cardona & Zhang:

k \ n 2 3 4 5 6 7

1 2 21 228 2805 39330 623385
2 42 1272 30300 696600 16418430
3 2544 154500 6494400 241204950
4 309000 31534200 2068516800
5 63068400 9737380800
6 19474761600

Note that TCn,k is rapidly increasing from 0 ≤ k ≤ n− 1!

Guess:

TCn =

n−1∑
k=0

TCn,k = Θ(TCn,n−1).
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Searching in the OEIS

We have,

{TCn,n−1} = {2, 42, 2544, 309000, 63068400, 19474761600, . . .}.

This sequence is not in OEIS!

We have, {
TCn,n−1

n!

}
= {1, 7, 106, 2575, 87595, 3864040, . . .}.

This sequence is in OEIS: A213863!

A213863 was submitted on June 23rd, 2012 by Alois P. Heinz who gave its
first 17 terms and a (brute-force) Maple program to compute them;
tc-networks are not mentioned in his entry.
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A Counting Sequence of Words

Definition (OEIS; A213863)

Denote by an the number of words on letters {ω1, . . . , ωn} so that

(i) each letter occurs exactly 3 times;

(ii) ωi has either not occurred or it has occurred at least as often as ωj

with j > i.

For example, a2 = 7 because

aaabbb, aababb, aabbab, abaabb, ababab, baaabb, baabab.

Proposition

We have,
TCn,n−1

n!
= an−1.
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Bijective Proof

ρ
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Asymptotics of General TC-Networks

Define

bn,m = (2n+m− 2)

m∑
j=1

bn−1,j

Then, an =
∑

m≥1 bn,m.

From this, by a recent method of Elvey Price, Fang, Wallner (2021):

Theorem (F. & Yu & Zhang; 2021)

We have,

TCn = Θ

(
n−2/3ea1(3n)

1/3

(
12

e2

)n

n2n

)
,

where a1 is the largest root of the Airy function of first order.
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Exact Enumeration of General TC-Networks

Definition

Denote by wn,k the number of words on letters {ω1, . . . , ωn} so that

(i) k letters occur 3 times; n− k letters occur 2 times, where the 0-th,
1-st, 2-nd occurrence counts as the 1-st, 2-nd, 3-rd.

(ii) ωi has either not occurred or it has occurred at least as often as ωj

with j > i.

For example, w2,1 = 7 because

abbab, babab, aabbb, ababb, baabb, aabab, aaabb.

Theorem (Chang & F. & Liu & Wallner & Yu; 2022+)

We have,
TCn,k

n!
=

wn−1,k

2n−1−k
.
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Fast Computation of TCn,k

Define,

bn,k,m =

m∑
j=1

bn−1,k,j + (n+m+ k − 2)

m∑
j=1

bn−1,k−1,j

Then, ωn,k =
∑

m≥1 bn,k,m.

k \ n 2 3 4 5 6 7

1 2 21 228 2805 39330 623385
2 42 1272 30300 696600 16418430
3 2544 154500 6494400 241204950
4 309000 31534200 2068516800
5 63068400 9737380800
6 19474761600
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Stochastic Results for TC-Networks

From the table, one can observe that:

TCn,n−1−k ≈ 1

2kk!
TCn,n−1

for k close to n.

Theorem (Chang, F. & Liu & Wallner & Yu; 2023+)

(a) We have,

n− 1−# of reticulation nodes
d−→ Poisson(1/2).

(b) We have,
E(# of cherries) = O(1).
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Multicombining TC-Networks

Definition

Let d ≥ 2. A d-combining tree-child network is a tree-child network with
each reticulation node having exactly d parents.

Examples: d = 3

(a) (b) (c)

1
2

3

4

2

2

3

3

11

4

4

x

y
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Asymptotic Counting Result

Our encoding by words also works for d-combining tc-networks.

TC
[d]
n . . . # of d-combining networks with n leaves.

Following the same strategy as for d = 2 then gives the following result.

Theorem (Chang, F. & Liu & Wallner & Yu; 2023+)

We have,

TC[d]
n = Θ

(
(n!)d γ(d)n e3a1β(d)n

1/3
nα(d)

)
,

where a1 is the largest root of the Airy function of the first kind and

α(d) = −d(3d− 1)

2(d+ 1)
, β(d) =

(
d− 1

d+ 1

)2/3

, γ(d) = 4
(d+ 1)d−1

(d− 1)!
.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 24 / 30



Asymptotic Counting Result

Our encoding by words also works for d-combining tc-networks.

TC
[d]
n . . . # of d-combining networks with n leaves.

Following the same strategy as for d = 2 then gives the following result.

Theorem (Chang, F. & Liu & Wallner & Yu; 2023+)

We have,

TC[d]
n = Θ

(
(n!)d γ(d)n e3a1β(d)n

1/3
nα(d)

)
,

where a1 is the largest root of the Airy function of the first kind and

α(d) = −d(3d− 1)

2(d+ 1)
, β(d) =

(
d− 1

d+ 1

)2/3

, γ(d) = 4
(d+ 1)d−1

(d− 1)!
.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 24 / 30



Asymptotic Counting Result

Our encoding by words also works for d-combining tc-networks.

TC
[d]
n . . . # of d-combining networks with n leaves.

Following the same strategy as for d = 2 then gives the following result.

Theorem (Chang, F. & Liu & Wallner & Yu; 2023+)

We have,

TC[d]
n = Θ

(
(n!)d γ(d)n e3a1β(d)n

1/3
nα(d)

)
,

where a1 is the largest root of the Airy function of the first kind and

α(d) = −d(3d− 1)

2(d+ 1)
, β(d) =

(
d− 1

d+ 1

)2/3

, γ(d) = 4
(d+ 1)d−1

(d− 1)!
.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 24 / 30



Asymptotic Counting Result

Our encoding by words also works for d-combining tc-networks.

TC
[d]
n . . . # of d-combining networks with n leaves.

Following the same strategy as for d = 2 then gives the following result.

Theorem (Chang, F. & Liu & Wallner & Yu; 2023+)

We have,

TC[d]
n = Θ

(
(n!)d γ(d)n e3a1β(d)n

1/3
nα(d)

)
,

where a1 is the largest root of the Airy function of the first kind and

α(d) = −d(3d− 1)

2(d+ 1)
, β(d) =

(
d− 1

d+ 1

)2/3

, γ(d) = 4
(d+ 1)d−1

(d− 1)!
.

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 24 / 30



The Number of Reticulation Nodes

TC
[d]
n,k . . . # of d-combining tc-networks with n leaves and k reticulation

nodes.

We have the bound:

TC
[d]
n,n−1−k ≤ 1

2kk!
TC

[d]
n,n−1

but for d ≥ 3 it is not sharp anymore for k close to n!

Theorem (Chang & F. & Liu & Wallner & Yu; 2023+)

Let d ≥ 3. The limit law of the number of reticulation nodes is
degenerate. More precisely,

n− 1−# of reticulation nodes
L1−→ 0.
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Fixed Number of Reticulation Nodes

The component method can also be extended to d-combining tc-networks.

Theorem (Chang & F. & Liu & Wallner & Yu; 2023+)

We have,

TC
[3]
n,1 =

n(2n+ 1)

3
(2n− 1)!!− n2(2n− 2)!!;

TC
[3]
n,2 = n(n− 1)

(
70n2 + 244n+ 177

315
(2n+ 1)!!− 16n+ 13

48
(2n+ 2)!!

)
.

In addition, as n → ∞,

TCn,k ∼ 2dk−1
√
2

(d!)kk!

(
2

e

)n

nn+dk−1

for any fixed k.
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Open Problems

Can one obtain the first-order asymptotics? E.g., for d = 2, is there a
constant c such that

TCn ∼ cn−2/3ea1(3n)
1/3

(
12

e2

)n

n2n?

Note that the Poisson limit law result implies that

TCn ∼
√
e · TCn,n−1.

So, in order to prove the above claim, one needs to improve the
method of Elvey Price, Fang, Wallner (2021).

Is it possible to derive limit laws for the number of cherries and more
general patterns?

How about results for height and Sackin index?
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There are more classes of phylogenetic networks:

http://phylnet.univ-mlv.fr/

Thanks for your attention!

Michael Fuchs (NCCU) Phylogenet Networks July 10th, 2023 30 / 30


