Combinatorics of Phylogenetic Networks

Michael Fuchs

Department of Mathematical Sciences
Chengchi University

July 10th, 2023

Evolutionary Biology

Charles Darwin
 (1809-1882)

Evolutionary Biology

Charles Darwin (1809-1882)

First notebook on Transmutation of Species (1837)

What is a Phylogenetic Tree?

$X \ldots$ a finite set.

What is a Phylogenetic Tree?

X ... a finite set.

What is a Phylogenetic Tree?

X ... a finite set.

What is a Phylogenetic Tree?

X ... a finite set.

A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled by X.

Counting Phylogenetic Trees

$\mathrm{T}_{n} \ldots \#$ of phylogenetic trees with n labeled leaves.

Counting Phylogenetic Trees

$\mathrm{T}_{n} \ldots$. \# of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with $n-1$ labeled leaves.

Counting Phylogenetic Trees

$\mathrm{T}_{n} \ldots$... of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with $n-1$ labeled leaves.
Do the following:

Counting Phylogenetic Trees

$\mathrm{T}_{n} \ldots$... of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with $n-1$ labeled leaves.
Do the following:
(i) either attach a pendant edge with a node labeled by n to any edge,

Counting Phylogenetic Trees

$\mathrm{T}_{n} \ldots$... of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with $n-1$ labeled leaves.
Do the following:
(i) either attach a pendant edge with a node labeled by n to any edge,
(ii) or create a new root with one child the tree and the other the node labeled by n.

Counting Phylogenetic Trees

$\mathrm{T}_{n} \ldots$. \# of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with $n-1$ labeled leaves.
Do the following:
(i) either attach a pendant edge with a node labeled by n to any edge,
(ii) or create a new root with one child the tree and the other the node labeled by n.

This produces all trees of n labeled leaves.

Counting Phylogenetic Trees

$\mathrm{T}_{n} \ldots$... of phylogenetic trees with n labeled leaves.

Pick a phylogenetic tree with $n-1$ labeled leaves.
Do the following:
(i) either attach a pendant edge with a node labeled by n to any edge,
(ii) or create a new root with one child the tree and the other the node labeled by n.

This produces all trees of n labeled leaves.

Thus,

$$
\mathrm{T}_{n}=(2 n-3) \mathrm{T}_{n-1}
$$

and by iteration

$$
\mathrm{T}_{n}=(2 n-3)!!
$$

What is a Phylogenetic Network?

X ... a finite set.

What is a Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:

What is a Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:
(a) root: in-degree 0 and out-degree 1;

What is a Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;

What is a Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;
(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

What is a Phylogenetic Network?

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0 ; bijectively labeled by X;
(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.
They are used to model reticulate evolution which contains reticulation events such as lateral gene transfer or hybridization.

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

Examples:

(a)

(b)

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

Examples:

Figure: (a) is not a tc-network whereas (b) is a tc-network.

Method of Component Graphs

Method of Component Graphs

Cardona \& Zhang (JCSS; 2020) used component graphs:

Method of Component Graphs

Cardona \& Zhang (JCSS; 2020) used component graphs:

Counting TC-Networks

$k_{m} \ldots$... of component graphs with m nodes.

Proposition

k_{m} satisfies $k_{m}=\sum_{s=1}^{m-1} k_{m, s}$ where $k_{1,1}=1$ and

$$
k_{m, s}=\sum_{1 \leq t \leq m-1-s}\binom{m}{s} \sum_{0 \leq \ell \leq t}(-1)^{\ell}\binom{t}{\ell}\binom{m-1-s-\ell+d}{d} k_{m-s, t}
$$

Counting TC-Networks

$k_{m} \ldots$ \# of component graphs with m nodes.

Proposition

k_{m} satisfies $k_{m}=\sum_{s=1}^{m-1} k_{m, s}$ where $k_{1,1}=1$ and

$$
k_{m, s}=\sum_{1 \leq t \leq m-1-s}\binom{m}{s} \sum_{0 \leq \ell \leq t}(-1)^{\ell}\binom{t}{\ell}\binom{m-1-s-\ell+d}{d} k_{m-s, t}
$$

$\mathrm{TC}_{n, k} \ldots$ \# of tc-networks with n leaves and k reticulation nodes.
Theorem (Cardona \& Zhang; 2020)

$$
\mathrm{TC}_{n, k}=\frac{1}{2^{n-1-k}} \sum_{\left\{B_{j}\right\}_{j=1}^{k+1}} \sum_{G \in \mathcal{K}_{k+1}} \prod_{j=1}^{k+1} \frac{\left(2 b_{j}+g_{j}-2\right)}{\left(b_{j}-1\right)!\prod_{\ell=1}^{k+1}\left(g_{j, \ell}\right)!}
$$

$\mathrm{TC}_{n, k}$ for small n, k

$\mathrm{TC}_{n, k}$ for small n, k

Lemma
In any tc-network: $k \leq n-1$.

$\mathrm{TC}_{n, k}$ for small n, k

Lemma

In any tc-network: $k \leq n-1$.

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

$\mathrm{TC}_{n, k}$ for small n, k
Lemma
In any tc-network: $k \leq n-1$.

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Computation becomes more and more cumbersome because the number of component graphs increases rapidly!

Formulas for small k

Theorem (Cardona \& Zhang; 2020)
We have,

$$
\mathrm{TC}_{n, 1}=\frac{n!(2 n)!}{2^{n} n!}-2^{n-1} n!
$$

and

$$
\begin{gathered}
\mathrm{TC}_{n, 2}=\frac{n!}{2^{n}} \sum_{j=1}^{n-2}\binom{2 j}{j}\binom{2 n-2 j}{n-j} \frac{j(2 j+1)(2 n-j-1)}{2 n-2 j-1} \\
+n(n-1) n!2^{n-3}-\frac{(2 n-1)!n}{3 \cdot 2^{n-1}(n-2)!}
\end{gathered}
$$

Formulas for small k

Theorem (Cardona \& Zhang; 2020)
We have,

$$
\mathrm{TC}_{n, 1}=\frac{n!(2 n)!}{2^{n} n!}-2^{n-1} n!
$$

and

$$
\begin{aligned}
\mathrm{TC}_{n, 2}= & \frac{n!}{2^{n}} \sum_{j=1}^{n-2}\binom{2 j}{j}\binom{2 n-2 j}{n-j} \frac{j(2 j+1)(2 n-j-1)}{2 n-2 j-1} \\
& +n(n-1) n!2^{n-3}-\frac{(2 n-1)!n}{3 \cdot 2^{n-1}(n-2)!} \\
= & n(n-1)\left(\frac{3 n+2}{3}(2 n-1)!!-(2 n)!!\right) .
\end{aligned}
$$

Formulas for small k

Theorem (Cardona \& Zhang; 2020)

We have,

$$
\mathrm{TC}_{n, 1}=\frac{n!(2 n)!}{2^{n} n!}-2^{n-1} n!
$$

and

$$
\begin{aligned}
\mathrm{TC}_{n, 2}= & \frac{n!}{2^{n}} \sum_{j=1}^{n-2}\binom{2 j}{j}\binom{2 n-2 j}{n-j} \frac{j(2 j+1)(2 n-j-1)}{2 n-2 j-1} \\
& +n(n-1) n!2^{n-3}-\frac{(2 n-1)!n}{3 \cdot 2^{n-1}(n-2)!} \\
= & n(n-1)\left(\frac{3 n+2}{3}(2 n-1)!!-(2 n)!!\right) .
\end{aligned}
$$

En-Yu Huang (2022) derived a formula for $k=3$.

Component Graphs for $k=3$

(1)

(2)

(3)

(4)
(5)

(7)

(8)

(9)

(11)
(6)

(12)

(13)

Asymptotics of TC-Networks with fixed k

Proposition

Let $S_{n, k}$ be the number of tc-networks arising from the star-component graph. Then,

$$
S_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1} .
$$

Asymptotics of TC-Networks with fixed k

Proposition

Let $S_{n, k}$ be the number of tc-networks arising from the star-component graph. Then,

$$
S_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1} .
$$

In fact, as $n \rightarrow \infty, S_{n, k} \sim \mathrm{TC}_{n, k}$.

Asymptotics of TC-Networks with fixed k

Proposition

Let $S_{n, k}$ be the number of tc-networks arising from the star-component graph. Then,

$$
S_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1} .
$$

In fact, as $n \rightarrow \infty, S_{n, k} \sim \mathrm{TC}_{n, k}$.

Theorem (F. \& Huang \& Yu; 2022)
As $n \rightarrow \infty$,

$$
\mathrm{TC}_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1}
$$

Asymptotics of TC-Networks with fixed k

Proposition

Let $S_{n, k}$ be the number of tc-networks arising from the star-component graph. Then,

$$
S_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1} .
$$

In fact, as $n \rightarrow \infty, S_{n, k} \sim \mathrm{TC}_{n, k}$.

Theorem (F. \& Huang \& Yu; 2022)
As $n \rightarrow \infty$,

$$
\mathrm{TC}_{n, k} \sim \frac{2^{k-1} \sqrt{2}}{k!}\left(\frac{2}{e}\right)^{n} n^{n+2 k-1}
$$

General TC-Networks (i)

$\mathrm{TC}_{n} \ldots$ \# of tc-networks with n leaves.

General TC-Networks (i)

$\mathrm{TC}_{n} \ldots \#$ of tc-networks with n leaves.
Theorem (McDiarmid, Semple, Welsh; 2015)
For constants $0<c_{1}<c_{2}$,

$$
\left(c_{1} n\right)^{2 n} \leq \mathrm{TC}_{n} \leq\left(c_{2} n\right)^{2 n}
$$

General TC-Networks (i)

$\mathrm{TC}_{n} \ldots \#$ of tc-networks with n leaves.
Theorem (McDiarmid, Semple, Welsh; 2015)
For constants $0<c_{1}<c_{2}$,

$$
\left(c_{1} n\right)^{2 n} \leq \mathrm{TC}_{n} \leq\left(c_{2} n\right)^{2 n}
$$

Question: what is the exponential growth rate?

General TC-Networks (i)

$\mathrm{TC}_{n} \ldots$. \# of tc-networks with n leaves.
Theorem (McDiarmid, Semple, Welsh; 2015)
For constants $0<c_{1}<c_{2}$,

$$
\left(c_{1} n\right)^{2 n} \leq \mathrm{TC}_{n} \leq\left(c_{2} n\right)^{2 n}
$$

Question: what is the exponential growth rate?
McDiarmid \& Semple \& Welsh (2015) also proved stochastic results.

General TC-Networks (i)

$\mathrm{TC}_{n} \ldots$. \# of tc-networks with n leaves.
Theorem (McDiarmid, Semple, Welsh; 2015)
For constants $0<c_{1}<c_{2}$,

$$
\left(c_{1} n\right)^{2 n} \leq \mathrm{TC}_{n} \leq\left(c_{2} n\right)^{2 n}
$$

Question: what is the exponential growth rate?
McDiarmid \& Semple \& Welsh (2015) also proved stochastic results.
Theorem (McDiarmid, Semple, Welsh; 2015)
(a) \# of reticulation nodes $\sim n$ for almost all tc-networks;
(b) The number of cherries is $o(n)$ for almost all tc-networks.

General TC-Networks (ii)

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

General TC-Networks (ii)

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Note that $\mathrm{TC}_{n, k}$ is rapidly increasing from $0 \leq k \leq n-1$!

General TC-Networks (ii)

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Note that $\mathrm{TC}_{n, k}$ is rapidly increasing from $0 \leq k \leq n-1$!

General TC-Networks (ii)

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Note that $\mathrm{TC}_{n, k}$ is rapidly increasing from $0 \leq k \leq n-1$!

General TC-Networks (ii)

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Note that $\mathrm{TC}_{n, k}$ is rapidly increasing from $0 \leq k \leq n-1$!
Guess:

$$
\mathrm{TC}_{n}=\sum_{k=0}^{n-1} \mathrm{TC}_{n, k}=\Theta\left(\mathrm{TC}_{n, n-1}\right)
$$

General TC-Networks (ii)

Cardona \& Zhang:

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Note that $\mathrm{TC}_{n, k}$ is rapidly increasing from $0 \leq k \leq n-1$!
Guess:

$$
\mathrm{TC}_{n}=\sum_{k=0}^{n-1} \mathrm{TC}_{n, k}=\Theta\left(\mathrm{TC}_{n, n-1}\right)
$$

Searching in the OEIS

We have,

$$
\left\{\mathrm{TC}_{n, n-1}\right\}=\{2,42,2544,309000,63068400,19474761600, \ldots\}
$$

Searching in the OEIS

We have,

$$
\left\{\mathrm{TC}_{n, n-1}\right\}=\{2,42,2544,309000,63068400,19474761600, \ldots\}
$$

This sequence is not in OEIS!

Searching in the OEIS

We have,

$$
\left\{\mathrm{TC}_{n, n-1}\right\}=\{2,42,2544,309000,63068400,19474761600, \ldots\}
$$

This sequence is not in OEIS!
We have,

$$
\left\{\frac{\mathrm{TC}_{n, n-1}}{n!}\right\}=\{1,7,106,2575,87595,3864040, \ldots\}
$$

Searching in the OEIS

We have,

$$
\left\{\mathrm{TC}_{n, n-1}\right\}=\{2,42,2544,309000,63068400,19474761600, \ldots\}
$$

This sequence is not in OEIS!
We have,

$$
\left\{\frac{\mathrm{TC}_{n, n-1}}{n!}\right\}=\{1,7,106,2575,87595,3864040, \ldots\}
$$

This sequence is in OEIS: A213863!

Searching in the OEIS

We have,

$$
\left\{\mathrm{TC}_{n, n-1}\right\}=\{2,42,2544,309000,63068400,19474761600, \ldots\}
$$

This sequence is not in OEIS!
We have,

$$
\left\{\frac{\mathrm{TC}_{n, n-1}}{n!}\right\}=\{1,7,106,2575,87595,3864040, \ldots\}
$$

This sequence is in OEIS: A213863!
A213863 was submitted on June 23rd, 2012 by Alois P. Heinz who gave its first 17 terms and a (brute-force) Maple program to compute them; tc-networks are not mentioned in his entry.

A Counting Sequence of Words

Definition (OEIS; A213863)

Denote by a_{n} the number of words on letters $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ so that
(i) each letter occurs exactly 3 times;
(ii) ω_{i} has either not occurred or it has occurred at least as often as ω_{j} with $j>i$.

A Counting Sequence of Words

Definition (OEIS; A213863)

Denote by a_{n} the number of words on letters $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ so that
(i) each letter occurs exactly 3 times;
(ii) ω_{i} has either not occurred or it has occurred at least as often as ω_{j} with $j>i$.

For example, $a_{2}=7$ because
aaabbb, aababb, aabbab, abaabb, ababab, baaabb, baabab.

A Counting Sequence of Words

Definition (OEIS; A213863)

Denote by a_{n} the number of words on letters $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ so that
(i) each letter occurs exactly 3 times;
(ii) ω_{i} has either not occurred or it has occurred at least as often as ω_{j} with $j>i$.

For example, $a_{2}=7$ because
aaabbb, aababb, aabbab, abaabb, ababab, baaabb, baabab.

Proposition

We have,

$$
\frac{\mathrm{TC}_{n, n-1}}{n!}=a_{n-1}
$$

Bijective Proof

Asymptotics of General TC-Networks

Define

$$
b_{n, m}=(2 n+m-2) \sum_{j=1}^{m} b_{n-1, j}
$$

Then, $a_{n}=\sum_{m \geq 1} b_{n, m}$.

Asymptotics of General TC-Networks

Define

$$
b_{n, m}=(2 n+m-2) \sum_{j=1}^{m} b_{n-1, j}
$$

Then, $a_{n}=\sum_{m \geq 1} b_{n, m}$.
From this, by a recent method of Elvey Price, Fang, Wallner (2021):

Asymptotics of General TC-Networks

Define

$$
b_{n, m}=(2 n+m-2) \sum_{j=1}^{m} b_{n-1, j}
$$

Then, $a_{n}=\sum_{m \geq 1} b_{n, m}$.
From this, by a recent method of Elvey Price, Fang, Wallner (2021):
Theorem (F. \& Yu \& Zhang; 2021)
We have,

$$
\mathrm{TC}_{n}=\Theta\left(n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n}\right)
$$

where a_{1} is the largest root of the Airy function of first order.

Asymptotics of General TC-Networks

Define

$$
b_{n, m}=(2 n+m-2) \sum_{j=1}^{m} b_{n-1, j}
$$

Then, $a_{n}=\sum_{m \geq 1} b_{n, m}$.
From this, by a recent method of Elvey Price, Fang, Wallner (2021):
Theorem (F. \& Yu \& Zhang; 2021)
We have,

$$
\mathrm{TC}_{n}=\Theta\left(n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n}\right)
$$

where a_{1} is the largest root of the Airy function of first order.

Exact Enumeration of General TC-Networks

Definition

Denote by $w_{n, k}$ the number of words on letters $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ so that
(i) k letters occur 3 times; $n-k$ letters occur 2 times, where the 0 -th, 1 -st, 2-nd occurrence counts as the 1-st, 2-nd, 3-rd.
(ii) ω_{i} has either not occurred or it has occurred at least as often as ω_{j} with $j>i$.

Exact Enumeration of General TC-Networks

Definition

Denote by $w_{n, k}$ the number of words on letters $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ so that
(i) k letters occur 3 times; $n-k$ letters occur 2 times, where the 0 -th, 1 -st, 2-nd occurrence counts as the 1-st, 2-nd, 3-rd.
(ii) ω_{i} has either not occurred or it has occurred at least as often as ω_{j} with $j>i$.

For example, $w_{2,1}=7$ because

$$
a b b a b, b a b a b, a a b b b, a b a b b, b a a b b, a a b a b, a a a b b .
$$

Exact Enumeration of General TC-Networks

Definition

Denote by $w_{n, k}$ the number of words on letters $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ so that
(i) k letters occur 3 times; $n-k$ letters occur 2 times, where the $0-t h$, 1 -st, 2-nd occurrence counts as the 1-st, 2-nd, 3-rd.
(ii) ω_{i} has either not occurred or it has occurred at least as often as ω_{j} with $j>i$.

For example, $w_{2,1}=7$ because

$$
a b b a b, b a b a b, a a b b b, a b a b b, b a a b b, a a b a b, a a a b b .
$$

Theorem (Chang \& F. \& Liu \& Wallner \& Yu; 2022+)
We have,

$$
\frac{\mathrm{TC}_{n, k}}{n!}=\frac{w_{n-1, k}}{2^{n-1-k}}
$$

Fast Computation of $\mathrm{TC}_{n, k}$

Define,

$$
b_{n, k, m}=\sum_{j=1}^{m} b_{n-1, k, j}+(n+m+k-2) \sum_{j=1}^{m} b_{n-1, k-1, j}
$$

Then, $\omega_{n, k}=\sum_{m \geq 1} b_{n, k, m}$.

Fast Computation of $\mathrm{TC}_{n, k}$

Define,

$$
b_{n, k, m}=\sum_{j=1}^{m} b_{n-1, k, j}+(n+m+k-2) \sum_{j=1}^{m} b_{n-1, k-1, j}
$$

Then, $\omega_{n, k}=\sum_{m \geq 1} b_{n, k, m}$.

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Fast Computation of $\mathrm{TC}_{n, k}$

Define,

$$
b_{n, k, m}=\sum_{j=1}^{m} b_{n-1, k, j}+(n+m+k-2) \sum_{j=1}^{m} b_{n-1, k-1, j}
$$

Then, $\omega_{n, k}=\sum_{m \geq 1} b_{n, k, m}$.

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Fast Computation of $\mathrm{TC}_{n, k}$

Define,

$$
b_{n, k, m}=\sum_{j=1}^{m} b_{n-1, k, j}+(n+m+k-2) \sum_{j=1}^{m} b_{n-1, k-1, j}
$$

Then, $\omega_{n, k}=\sum_{m \geq 1} b_{n, k, m}$.

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Fast Computation of $\mathrm{TC}_{n, k}$

Define,

$$
b_{n, k, m}=\sum_{j=1}^{m} b_{n-1, k, j}+(n+m+k-2) \sum_{j=1}^{m} b_{n-1, k-1, j}
$$

Then, $\omega_{n, k}=\sum_{m \geq 1} b_{n, k, m}$.

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Fast Computation of $\mathrm{TC}_{n, k}$

Define,

$$
b_{n, k, m}=\sum_{j=1}^{m} b_{n-1, k, j}+(n+m+k-2) \sum_{j=1}^{m} b_{n-1, k-1, j}
$$

Then, $\omega_{n, k}=\sum_{m \geq 1} b_{n, k, m}$.

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Fast Computation of $\mathrm{TC}_{n, k}$

Define,

$$
b_{n, k, m}=\sum_{j=1}^{m} b_{n-1, k, j}+(n+m+k-2) \sum_{j=1}^{m} b_{n-1, k-1, j}
$$

Then, $\omega_{n, k}=\sum_{m \geq 1} b_{n, k, m}$.

$k \backslash n$	2	3	4	5	6	7
1	2	21	228	2805	39330	623385
2		42	1272	30300	696600	16418430
3			2544	154500	6494400	241204950
4				309000	31534200	2068516800
5					63068400	9737380800
6						19474761600

Stochastic Results for TC-Networks

From the table, one can observe that:

$$
\mathrm{TC}_{n, n-1-k} \approx \frac{1}{2^{k} k!} \mathrm{TC}_{n, n-1}
$$

for k close to n.

Stochastic Results for TC-Networks

From the table, one can observe that:

$$
\mathrm{TC}_{n, n-1-k} \approx \frac{1}{2^{k} k!} \mathrm{TC}_{n, n-1}
$$

for k close to n.

Theorem (Chang, F. \& Liu \& Wallner \& Yu; 2023+)
(a) We have,

$$
n-1-\# \text { of reticulation nodes } \xrightarrow{d} \text { Poisson }(1 / 2) .
$$

Stochastic Results for TC-Networks

From the table, one can observe that:

$$
\mathrm{TC}_{n, n-1-k} \approx \frac{1}{2^{k} k!} \mathrm{TC}_{n, n-1}
$$

for k close to n.

Theorem (Chang, F. \& Liu \& Wallner \& Yu; 2023+)
(a) We have,

$$
n-1-\# \text { of reticulation nodes } \xrightarrow{d} \text { Poisson }(1 / 2) .
$$

(b) We have,

$$
\mathbb{E}(\# \text { of cherries })=\mathcal{O}(1)
$$

Multicombining TC-Networks

Definition

Let $d \geq 2$. A d-combining tree-child network is a tree-child network with each reticulation node having exactly d parents.

Multicombining TC-Networks

Definition

Let $d \geq 2$. A d-combining tree-child network is a tree-child network with each reticulation node having exactly d parents.

Examples: $d=3$

Asymptotic Counting Result

Our encoding by words also works for d-combining tc-networks.

Asymptotic Counting Result

Our encoding by words also works for d-combining tc-networks.
$\mathrm{TC}_{n}^{[d]} \ldots$ \# of d-combining networks with n leaves.

Asymptotic Counting Result

Our encoding by words also works for d-combining tc-networks.
$\mathrm{TC}_{n}^{[d]} \ldots$ \# of d-combining networks with n leaves.
Following the same strategy as for $d=2$ then gives the following result.

Asymptotic Counting Result

Our encoding by words also works for d-combining tc-networks. $\mathrm{TC}_{n}^{[d]} \ldots$ \# of d-combining networks with n leaves.

Following the same strategy as for $d=2$ then gives the following result.
Theorem (Chang, F. \& Liu \& Wallner \& Yu; 2023+)
We have,

$$
\mathrm{TC}_{n}^{[d]}=\Theta\left((n!)^{d} \gamma(d)^{n} e^{3 a_{1} \beta(d) n^{1 / 3}} n^{\alpha(d)}\right)
$$

where a_{1} is the largest root of the Airy function of the first kind and

$$
\alpha(d)=-\frac{d(3 d-1)}{2(d+1)}, \quad \beta(d)=\left(\frac{d-1}{d+1}\right)^{2 / 3}, \quad \gamma(d)=4 \frac{(d+1)^{d-1}}{(d-1)!}
$$

The Number of Reticulation Nodes

$\mathrm{TC}_{n, k}^{[d]} \ldots \#$ of d-combining tc-networks with n leaves and k reticulation nodes.

The Number of Reticulation Nodes

$\mathrm{TC}_{n, k}^{[d]} \ldots \#$ of d-combining tc-networks with n leaves and k reticulation nodes.

We have the bound:

$$
\mathrm{TC}_{n, n-1-k}^{[d]} \leq \frac{1}{2^{k} k!} \mathrm{TC}_{n, n-1}^{[d]}
$$

but for $d \geq 3$ it is not sharp anymore for k close to n !

The Number of Reticulation Nodes

$\mathrm{TC}_{n, k}^{[d]} \ldots \#$ of d-combining tc-networks with n leaves and k reticulation nodes.

We have the bound:

$$
\mathrm{TC}_{n, n-1-k}^{[d]} \leq \frac{1}{2^{k} k!} \mathrm{TC}_{n, n-1}^{[d]}
$$

but for $d \geq 3$ it is not sharp anymore for k close to n !

Theorem (Chang \& F. \& Liu \& Wallner \& Yu; 2023+)
Let $d \geq 3$. The limit law of the number of reticulation nodes is degenerate. More precisely,

$$
n-1-\# \text { of reticulation nodes } \xrightarrow{L_{1}} 0 \text {. }
$$

Fixed Number of Reticulation Nodes

The component method can also be extended to d-combining tc-networks.

Fixed Number of Reticulation Nodes

The component method can also be extended to d-combining tc-networks.
Theorem (Chang \& F. \& Liu \& Wallner \& Yu; 2023+)
We have,
$\mathrm{TC}_{n, 1}^{[3]}=\frac{n(2 n+1)}{3}(2 n-1)!!-n^{2}(2 n-2)!!;$
$\mathrm{TC}_{n, 2}^{[3]}=n(n-1)\left(\frac{70 n^{2}+244 n+177}{315}(2 n+1)!!-\frac{16 n+13}{48}(2 n+2)!!\right)$.
In addition, as $n \rightarrow \infty$,

$$
\mathrm{TC}_{n, k} \sim \frac{2^{d k-1} \sqrt{2}}{(d!)^{k} k!}\left(\frac{2}{e}\right)^{n} n^{n+d k-1}
$$

for any fixed k.

Open Problems

- Can one obtain the first-order asymptotics? E.g., for $d=2$, is there a constant c such that

$$
\mathrm{TC}_{n} \sim c n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n} ?
$$

Open Problems

- Can one obtain the first-order asymptotics? E.g., for $d=2$, is there a constant c such that

$$
\mathrm{TC}_{n} \sim c n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n} ?
$$

Note that the Poisson limit law result implies that

$$
\mathrm{TC}_{n} \sim \sqrt{e} \cdot \mathrm{TC}_{n, n-1}
$$

So, in order to prove the above claim, one needs to improve the method of Elvey Price, Fang, Wallner (2021).

Open Problems

- Can one obtain the first-order asymptotics? E.g., for $d=2$, is there a constant c such that

$$
\mathrm{TC}_{n} \sim c n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n} ?
$$

Note that the Poisson limit law result implies that

$$
\mathrm{TC}_{n} \sim \sqrt{e} \cdot \mathrm{TC}_{n, n-1}
$$

So, in order to prove the above claim, one needs to improve the method of Elvey Price, Fang, Wallner (2021).

- Is it possible to derive limit laws for the number of cherries and more general patterns?

Open Problems

- Can one obtain the first-order asymptotics? E.g., for $d=2$, is there a constant c such that

$$
\mathrm{TC}_{n} \sim c n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n} ?
$$

Note that the Poisson limit law result implies that

$$
\mathrm{TC}_{n} \sim \sqrt{e} \cdot \mathrm{TC}_{n, n-1}
$$

So, in order to prove the above claim, one needs to improve the method of Elvey Price, Fang, Wallner (2021).

- Is it possible to derive limit laws for the number of cherries and more general patterns?
- How about results for height and Sackin index?

Some References

1. G. Cardona and L. Zhang (2020). Counting and enumerating tree-child networks and their subclasses, J. Comput. System Sci., 114, 84-104.
2. Y.-S. Chang, M. Fuchs, H. Liu, M. Wallner, G.-R. Yu. Enumerative and distributional results for d-combining tree-child networks, 48 pages, submitted.
3. M. Fuchs, E.-Y. Huang, G.-R. Yu (2022). Counting phylogenetic networks with few reticulation vertices: a second approach, Discrete Appl. Math., 320, 140-149.
4. M. Fuchs, G.-R. Yu, L. Zhang (2021). On the asymptotic growth of the number of tree-child networks, European J. Combin., 93, 103278, 20 pages.
5. C. McDiarmid, C. Semple, D. Welsh (2015). Counting phylogenetic networks, Ann. Comb., 19:1, 205-224.

There are more classes of phylogenetic networks:
http://phylnet.univ-mlv.fr/

Who is Who in Phylogenetic Networks

※ Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help in \mathbf{Q}

Find researchers working on a specific topic, in a given country, and find where (journals, conferences) the
community publishes or meets.

Browse publications, access keyword definitions and find trends in publications on phylogenetic network methods and
methodologies.

Locate programs to compute, evaluate, compare or visualize phylogenetic networks, and view how these are linked with each other and input data.

Follow an author, publications tagged with a keyword, or the entire database using the \boldsymbol{B} icon in the menu, on an author's page, or on a keyword's page.

Thanks for your attention!

