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Abstract. In [4] deMathan proved that Khintchine’s Theorem has an
analogue in the field of formal Laurent series. First, we show that in case
of only one inequality this result can be also obtained by the continued
fraction theory. Then, we are interested in the number of solutions and
show under special assumptions that one gets a central limit theorem, a
law of iterated logarithm and an asymptotic formula. This is an analogue
of a result due to LeVeque [10]. The proof is based on probabilistic results
for formal Laurent series due to Niederreiter [11].

1. Introduction

In [6] Hurwitz proved the following classical theorem:

Theorem 1. (Hurwitz Theorem) For any irrational number x the in-
equality

(1)
∣∣∣∣x−

p

q

∣∣∣∣ <
1√
5q2

has infinitely many integer solutions p and q > 0. The factor
√

5 is best
possible, which means, that a similar theorem does not hold, if the factor is
replaced by any bigger one.

It is well known that the bound on the right hand side of (1) can be con-
siderably improved if someone concentrates not only on the set of irrational
numbers but also on other sets with measure one (thereby the measure is
the Lebesgue measure on (0, 1) which we are going to denote by λ). This is
a famous result due to Khintchine.

Theorem 2. (Khintchine’s Theorem) Let g(k) be a positive function on
the positive integers, such that kg(k) decreases. Then the inequality

(2)
∣∣∣∣x−

p

q

∣∣∣∣ <
g(q)
q
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has finitely or infinitely many integer solutions p and q > 0 for almost all
x, according to the series

∞∑

k=1

g(k)

converges or diverges.

In case of divergence of the above series, it is interesting to consider the
following sets

(3) Xn(x) = #{(p, q)|1 ≤ q ≤ n, (p, q) = 1 and p/q is a solution of (2)}
and

(4) Yn(x) = #{(p, q)|1 ≤ q ≤ n and p/q is a solution of (2)}
for integers n ≥ 1 and x ∈ (0, 1). (Xn)n≥1 and (Yn)n≥1 can be viewed as
sequences of random variables and a lot of work was done on the asymptotic
distribution of these sequences by several authors. In this paper we are
interested in a result of LeVeque.

Let f be a function with the following properties:

0 ≤ f(x) ≤ 1
2

and decreasing for x ≥ 0;(5)

f(x) = O(x−1) and f ′(x) = O(x−2) , as x −→∞;(6)

(7)
∞∑

k=1

f(k) = ∞

LeVeque proved in [10] the following theorem:

Theorem 3. Suppose f satisfies the conditions (5)-(7) and put

g(x) =
f(log x)

x
and G(n) =

n∑

k=1

g(k).

With Xn defined as in (3) we have:

I. For fixed ω we have

lim
n−→∞λ

[
Xn <

12
π2

G(n) + ω

(
12
π2

G(n)
)1/2

]
= Φ(ω) :=

1√
2π

∫ ω

−∞
e−

u2

2 du.

II. For almost all x we have

Xn(x) ∼ 12
π2

G(n).

By deMathan [4], we know that Khintchine’s Theorem has an analogue in
the field of formal Laurent series. The main result of this paper is an analogue
of the above theorem of LeVeque (see Theorem 9 in section 4). The proof
(section 6) is based on ideas of the classical proof and uses generalizations
of probabilistic results contained in [11], a sharper version of the Lemma
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of Borel-Cantelli for formal Laurent series, and an analogue of a sharper
version of the Khintchine-Levy Theorem (these auxiliary results are collected
in section 5). Furthermore, we show that the number of solutions in the
divergence case of Khintchine’s Theorem obeys a law of iterated logarithm
(Theorem 9.II).

In fact, deMathan proved Khintchine’s Theorem already for systems of
inequalities by following the classical idea of Khintchine. In this paper we
are not interested in systems but only in one equation. It is well known that
for this situation an easier proof of Khintchine’s Theorem can be given by
continued fraction theory. We show in section 3 that the classical arguments
also work in the Laurent series case (see Theorem 7). Furthermore, we give
an application of Khintchine’s Theorem in section 3 (see Theorem 8) and
show that also Hurwitz Theorem has an analogue in the field of formal
Laurent series (see Theorem 6).

We start with a brief introduction in the continued fraction theory in the
field of Laurent series (see also [4] and [15]).

2. Continued fractions and probabilistic results in the field
of formal Laurent series

Let K be an arbitrary field. We consider the field of rational functions
K(T ) with the following exponential evaluation

v

(
P

Q

)
= deg P − deg Q P, Q ∈ K[T ], Q 6= 0,

where we put as usual deg 0 = −∞.
With |α| = bv(α), where b ≥ 2 is an integer and α ∈ K(T ), we get an

evaluation of K(T ) and the complementation of this field with respect of
this evaluation is the field of formal Laurent series which we are going to
denote by K((T−1)).

In the following, we write a, b, . . . for elements of K, A,B, . . . for elements
of K[T ], and α, β, . . . for elements of K((T−1)).

There are lots of analogues between K[T ],K(T ),K((T−1)) and Z,Q,R.
Especially, one can consider finite continued fractions, which we are go-

ing to denote by [A0; A1, . . . , An], where A0 is an arbitrary polynomial and
A1, . . . , An are polynomials of degree > 0. It is easy to see that every element
of K(T ) has a unique representation as a finite continued fraction.

Furthermore, if one considers a sequence of polynomials (Ak)k≥0, where
A0 is an arbitrary element of K[T ] and Ak, k ≥ 1 are polynomials with degree
≥ 1, then [A0; A1, . . . , An] converges to an irrational element of K((T−1))
and one gets each irrational element exactly once.

In a nutshell we have as in the classical theory

Each element in K((T−1)) has a unique continued fraction expansion
and the expansion for an element is finite if and only if the element is in
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K(T ).

As in the classical theory one defines the k-th rational convergent of the
continued fraction expansion of α (denoted by Pk

Qk
). Most of the classical

results for the convergents have an analogue in the field of formal Laurent
series. We collect few results which we are going to use frequently.

Lemma 1. Let Pk
Qk

denote the k-th convergent of α. Then we have

(1) (Pk, Qk) = 1
(2) 1 = |Q0| < |Q1| < |Q2| . . .
(3) |Qk| =

∏k
i=1 |Ai|

(4)
∣∣∣α− Pk

Qk

∣∣∣ = 1
|Qk||Qk+1| < 1

|Qk|2
(5) If P, Q ∈ K[T ], Q 6= 0, (P,Q) = 1 and∣∣∣∣α−

P

Q

∣∣∣∣ <
1
|Q|2

then there exists an integer k ≥ 0 such that P
Q = Pk

Qk
.

(6) If P, Q ∈ K[T ], Q 6= 0 and |Qk| ≤ |Q| < |Qk+1| then∣∣∣∣α−
P

Q

∣∣∣∣ ≥
∣∣∣∣α−

Pk

Qk

∣∣∣∣

For each α ∈ K((T−1)) we write [α] for the polynomial part of α and
{α} = α− [α] for the fractional part of α.

In this paper we only consider the case of K = Fq with q = pt, p ∈ P and
t ≥ 1 an integer. In this case we use q for the basis of the evaluation.

The following subset of Fq((T−1)) can be viewed as the analogue of the
interval (0, 1) in the field of formal Laurent series

(8) H = {α ∈ Fq((T−1))||α| < 1}.
By restriction of the valuation of Fq((T−1)) on H one gets a compact topo-
logical space. We denote by B the σ-Algebra of Borel sets on H.

H is also an abelian subgroup of Fq((T−1)) and therefore, we have a
compact abelian group. On such a group there exists a unique, translation
invariant probability measure which we are going to denote by h.

With P , we denote the set of polynomials over Fq of positive degree
and with Ak(α) resp. Qk(α) and Pk(α) the k-th partial quotient resp. k-
th convergent of the continued fraction expansion of α. The following result
is contained in [11].

Lemma 2. Let A1, . . . , An be given polynomials in P and put

R(A1, . . . , An) = {α ∈ H|Ak(α) = Ak, 1 ≤ k ≤ n}.
Then we have

h(R(A1, . . . , An)) = q−2(deg A1+...+deg An).
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Proof. Lemma 2 in [11]. ¤
Most of the classical metrical results of the continued fraction theory

have an analogue in the field of formal Laurent series and because of the
ultrametric structure the proof is usually more simple. We mention only two
results, which we are going to use. They are both contained in the work of
Niederreiter [11].

We write in the following h-a.e. for a property which is true, except for a
set of measure zero.

Theorem 4. (Lemma of Borel-Cantelli for formal Laurent series)
Let f(k) be a positive function on the positive integers. Then we have

(1)
∑∞

k=1
1

f(k) < ∞ =⇒ |Ak(α)| ≤ f(k) for k large enough h-a.e.
(2)

∑∞
k=1

1
f(k) = ∞ =⇒ |Ak(α)| > f(k) for infinitely many k h-a.e.

Proof. Theorem 6 of [11]. ¤
The next theorem can be viewed as an analogue of the classical Theorem

of Khintchine-Levy.

Theorem 5. (Theorem of Khintchine-Levy for formal Laurent se-
ries) We have h-a.e.

lim
k−→∞

k
√
|Qk(α)| = q

q
q−1 .

Proof. Corollary 1 of [11]. ¤
The classical analogues of these two theorems are the main ingredients in

the classical proof of Khintchine’s Theorem. Therefore, one can expect that
the classical arguments carry over in the field of formal Laurent series. We
show in the next section that, in fact, this is true.

3. The Theorems of Khintchine and Hurwitz for formal
Laurent series

We start with the following Lemma (compare with Theorem 23 in [8]):

Lemma 3. If α is an irrational element of Fq((T−1)) with bounded contin-
ued fraction expansion then there exists a real constant c > 0 such that

∣∣∣∣α−
P

Q

∣∣∣∣ ≥
1

c|Q|2
for all P,Q ∈ K[T ], Q 6= 0.

If α is an irrational element with unbounded continued fraction expansion
then for any real constant c > 0 the inequality

∣∣∣∣α−
P

Q

∣∣∣∣ <
1

c|Q|2
has infinitely many solutions P, Q ∈ K[T ], Q 6= 0.
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Proof. In the first case, let c be a bound for the absolute values of the partial
quotients of the continued fraction expansion of α. Then, we have∣∣∣∣α−

Pk

Qk

∣∣∣∣ =
1

|Qk||Qk+1| =
1

|Ak+1||Qk|2 ≥
1

c|Qk|2
for k ≥ 0.

Next we consider arbitrary P, Q ∈ K[T ], Q 6= 0. Because of Lemma 1 (2)
there is an integer k ≥ 0 such that |Qk| ≤ |Q| < |Qk+1|. With (6) of Lemma
1 we have ∣∣∣∣α−

P

Q

∣∣∣∣ ≥
∣∣∣∣α−

Pk

Qk

∣∣∣∣ ≥
1

c|Qk| ≥
1

c|Q|
and the first case is proved.

In the second case there exists, because of the unbounded continued frac-
tion expansion of α, an integer k0 ≥ 1 such that |Ak| > c for all k ≥ k0.
Therefore, we have for such k∣∣∣∣α−

Pk

Qk

∣∣∣∣ =
1

|Qk||Qk+1| =
1

|Ak+1||Qk|2 <
1

c|Qk|2
and also the second case is proved. ¤

As a corollary we get an analogue of the Theorem of Hurwitz in the field
of formal Laurent series.

Theorem 6. (Hurwitz Theorem for Formal Laurent Series) Let 0 <
q′ < q. Then for all irrational α ∈ Fq((T−1)) the inequality

∣∣∣∣α−
P

Q

∣∣∣∣ <
1

q′|Q|2
has infinitely many solutions P, Q ∈ Fq[T ], Q 6= 0. If q′ ≥ q then this is not
true in general. Furthermore, there exist irrational α for which the above
inequality has no solutions.

Proof. Part one follows from Lemma 1 (4).
For the proof of the second part, we consider the following element

α = [0;T, T, T, . . .]

which is irrational and has a bounded continued fraction expansion with q
as a bound for the absolute values of the partial quotients. With the Lemma
we get the claimed result. ¤

The Lemma also shows, that if one is interested in irrational elements with
unbounded continued fraction expansion the factor q′ in Hurwitz Theorem
for formal Laurent series can be replaced by any positive real constant.

It is an easy consequence of the Lemma of Borel-Cantelli for formal Lau-
rent series that the elements in H with a bounded continued fraction expan-
sion form a set of measure zero (in fact much more is known about this set,
see [12]).

Because of that, one can expect, as in the classical case, an improvement
of the upper bound in Hurwitz Theorem for formal Laurent series, if one
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concentrates not only on all irrational elements but also on sets of elements
with measure one.

Our next aim is the prove of an analogue of Khintchine’s Theorem in
the field of formal Laurent series. We start with an easy consequence of the
Lemma of Borel-Cantelli for formal Laurent series:

Lemma 4. Let (ck)k≥0 be a sequence of positive real numbers with∑∞
k=0 ck = ∞. Then we have h-a.e. for infinitely many k

∣∣∣∣α−
Pk

Qk

∣∣∣∣ <
ck

|Qk|2 .

Proof. Because of

|Qk||Qkα− Pk| = |Qk|
|Qk+1| =

1
|Ak+1|

this follows from the Lemma of Borel-Cantelli for formal Laurent series. ¤
Now we can prove an analogue of Khintchine’s Theorem:

Theorem 7. (Khintchine’s Theorem for Formal Laurent Series) Let
g be a positive function defined on the sequence qk, k ≥ 0, such that qkg(qk)
decreases. Then the inequality

(9)
∣∣∣∣α−

P

Q

∣∣∣∣ <
g(|Q|)
|Q|

has finitely or infinitely many solutions P,Q ∈ K[T ], Q 6= 0 for h-a.e. α,
according to the series

(10)
∞∑

k=0

qkg(qk)

converges or diverges.

Proof. We assume first that the series (10) converges. In this case, we consider
the following sets

Bk = {α ∈ H|(9) has a solution P, Q with deg Q = k, deg P < deg Q}
where k is a nonnegative integer. Furthermore, we consider for fixed poly-
nomials P, Q ∈ K[T ], Q 6= 0, deg P < deg Q the set

BP,Q = {α ∈ H|(9) has P, Q as an solution}.
It is clear that

Bk =
⋃

deg Q=k,deg P<deg Q

BP,Q

and an easy calculation shows

h(BP,Q) = O

(
g(|Q|)
|Q|

)
,
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where the implied constant does not depend on P, Q. Therefore, we have
∞∑

k=0

h(Bk) ≤ (q − 1)
∞∑

k=0

q2kO

(
g(qk)
qk

)
< ∞

and the first part follows from the classical Lemma of Borel-Cantelli.
In the second case, we assume that the series (10) diverges. First, we show

that this implies that also the following series

(11)
∞∑

k=0

qtkg(qtk)

diverges, where t ≥ 0 is an integer.
We can assume that t ≥ 1 because the case t = 0 is obvious. Let n ≥ 0

be an integer and we put n = qt + r with integers q, r and r < q. Then, we
have

1
t

n∑

k=0

qkg(qk) ≤ 1
t

(q+1)t−1∑

k=0

qkg(qk) ≤
q∑

k=0

qtkg(qtk)

and n −→∞ entails the claimed result.
Because of the Khintchine-Levy Theorem for formal Laurent series we

can choose a positive integer t such that we have h-a.e.

|Qk| < qtk

for k large enough. Lemma 4 and (11) show, that we have h-a.e.
∣∣∣∣α−

Pk

Qk

∣∣∣∣ <
qtkg(qtk)
|Qk|2

for infinitely many k. If we combine these two results and use the assumption
that qkg(qk) decreases we obtain the claimed result. ¤

We give a classical example:
Example 1. We use the following notation Logqk = max{1, logq k} and con-
sider the function

g(qk) =
1

qkLogq(qk)
,

which fulfills the assumptions of Khinchine’s Theorem for formal Laurent
series. Furthermore, we have

∞∑

k=0

qkg(qk) = ∞

and therefore it follows that the inequality∣∣∣∣α−
P

Q

∣∣∣∣ <
1

|Q|2Logq|Q|
has infinitely many solutions h-a.e.

We show an easy consequence of Khintchine’s Theorem for formal Laurent
series. Therefore, we define:
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Definition 1. Let α be an irrational element of Fq((T−1)). The number

ν(α) = lim sup
|Q|−→∞

(
− log |α− P/Q|

log |Q|
)

,

where P and Q vary over all polynomials in Fq[T ] with Q 6= 0, is called the
approximation exponent of α.

This notation is slightly different from that introduced by deMathan [5]
and is contained in the survey of Lasjaunias [9].

The result is now as follows:

Theorem 8. We have h-a.e.

ν(α) = 2.

Proof. We consider the following function

gε(qk) =
1

qk(1+ε)

where ε > 0 is a real constant. Because of
∞∑

k=0

qkgε(qk) < ∞

it follows from Khintchine’s Theorem for formal Laurent series that the
inequality ∣∣∣∣α−

P

Q

∣∣∣∣ <
1

|Q|2+ε

has finitely many solutions h-a.e.
The result is now a direct consequence of the definition of the approxi-

mation exponent. ¤
In the next section we consider the case of divergence in Khintchin’s

Theorem for formal Laurent series and state the main result of the paper.

4. The Theorem of LeVeque for formal Laurent series

Let f be a function defined on the non-negative real numbers with the
following properties

0 < f(x) ≤ 1, f is decreasing ,
1

x1+ε
¿ f(x) ¿ 1

x
,(12)

f ′(x) ¿ 1
x2

,
∞∑

k=0

f(k) = ∞,(13)

where ε < 1 is a positive real constant.
If we define

g(qk) = q−kf(k)
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for k ≥ 0, then it follows from Khintchine’s Theorem for formal Laurent
series that the inequality

(14)
∣∣∣∣α−

P

Q

∣∣∣∣ <
g(|Q|)
|Q| =

f(deg Q)
|Q|2

has infinitely many solutions P,Q ∈ Fq[T ] with Q 6= 0 h-a.e.
We consider the following set

Wn(α) = #{(P, Q) ∈Fq[T ]× Fq[T ] | 0 ≤ deg Q ≤ n, (P, Q) = 1,

P/Q is a solution of (14)}
for n ≥ 0 and α ∈ H.

With this notation, we have the following analogue of LeVeque’s Theorem
in the field of formal Laurent series.

Theorem 9. Let (Wn)n≥0 be the sequence of random variables introduced
above and denote by

A(n) =
(q − 1)2

q

n∑

k=0

qdlogq f(k)e

for n ≥ 0, where dxe, for real x, is the smallest integer ≥ x.

I. For fixed real number ω we have

lim
n−→∞h

[
Wn −A(n) < ω((q − 1)A(n))1/2

]
= Φ(ω)

II. We have h-a.e.

lim sup
n−→∞

1
(2(q − 1)A(n) log log A(n))1/2

(Wn(α)−A(n)) = 1,

lim inf
n−→∞

1
(2(q − 1)A(n) log log A(n))1/2

(Wn(α)−A(n)) = −1.

In particular we have h-a.e.

(15) Wn(α) ∼ A(n).

Before we prove this result, we need a few auxiliary results which we
collect in the next section.

5. Auxilary Results

The first Lemma is a simply generalization of Lemma 4 in [11]:

Lemma 5. Let (gk)k≥1 be sequence of real-valued functions on P . Define
Xk(α) := gk(Ak(α)) for k ≥ 1 and α ∈ H. Then (Xk)k≥1 is an independent
sequence of random variables on the probability space (H, B, h).

Proof. To be exact, the Xk are only defined on the irrational elements of H.
But the other elements form a set of measure zero and we can define Xk on
this set arbitrarily.
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In order to show that the sequence is independent, it suffices to show that
the events A1(α) = A1, . . . , An(α) = An are independent for all polynomials
A1, . . . , An in P and n ≥ 1. But this is a simple consequence of Lemma 2.
¤

As in [11] we apply now the classical results of probability theory on this
sequence of random variables. Compare the next two results with Theorem
4 and Theorem 5 in [11].

Theorem 10. (Law of Iterated Logarithm for formal Laurent se-
ries) Let (gk)k≥1 be a sequence of real-valued functions on P with

∑

p∈P

g2
k(p)q−2 deg p < ∞

for all k ≥ 1. We denote by

ξk :=
∑

p∈P

gk(p)q−2 deg p, σ2
k :=

∑

p∈P

g2
k(p)q−2 deg p − ξ2

k, s2
n :=

n∑

k=1

σ2
k

for k, n ≥ 1 and assume that

s2
n −→∞ , as n −→∞(16)
|gk| ≤ mk(17)

mk = o

(√
s2
k

log log s2
k

)
, as k −→∞.(18)

Then we have h-a.e.

lim sup
n−→∞

1
(2s2

n log log s2
n)1/2

n∑

k=1

(gk(Ak(α))− ξk) = 1,

lim inf
n−→∞

1
(2s2

n log log s2
n)1/2

n∑

k=1

(gk(Ak(α))− ξk) = −1.

Proof. Consider the independent sequence of random variables, which is
defined as in Lemma 5 and apply the classical law of iterated logarithm due
to Kolmogorov (see for instance Theorem 1 of Chapter X in [13]). ¤
Theorem 11. (Central Limit Theorem for formal Laurent series)
Let (gk)k≥1 be a sequence of non-constant, real valued functions on P with

∑

p∈P

g2
k(p)q−2 deg p < ∞

for all k ≥ 1. Let ξk, σ
2
k and s2

n be as in Theorem 8 and denote by

Ln(ε) :=
1
s2
n

n∑

k=1

∑

p∈P,|gk(p)−ξk|≥εsn

(gk(p)− ξk)2q−2 deg p

for a positive real constant ε. Assume that limn−→∞ Ln(ε) = 0 for all ε > 0.
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Then, we have

lim
n−→∞h

[
n∑

k=1

(gk(Ak(α))− ξk) < ωsn

]
= Φ(ω).

Proof. Consider again the sequence of random variables of Lemma 5. From
the assumption that gk is non-constant, it follows that the standard devi-
ations of these random variables are positive and limn−→ Ln(ε) = 0 for all
ε > 0 is the classical Lindeberg condition for this sequence. Therefore, the
result follows from the classical central limit theorem. (see for instance Satz
51.3 in [1]) ¤

We have the following consequence:

Corollary 1. Let (gk)k≥1 be a sequence satisfying the assumptions of The-
orem 10 and further assume that

(19) s2
n = O

(
n∑

k=1

ξk

)
.

We denote by λ a real number in the interval (1
2 , 1). Then, for h-a.e. α there

exist a real number κ such that∣∣∣∣∣
n∑

k=1

gk(Ak(α))−
n∑

k=1

ξk

∣∣∣∣∣ ≤ κ

∣∣∣∣∣
n∑

k=1

ξk

∣∣∣∣∣
1−λ

for all n ≥ 1. Especially we have h-a.e.
n∑

k=1

gk(Ak(α)) ∼
n∑

k=1

ξk.

Proof. Because of the law of iterated logarithm for formal Laurent series, we
have h.a.e ∣∣∣∣∣

n∑

k=1

gk(Ak(α))−
n∑

k=1

ξk

∣∣∣∣∣ ≤ κ(s2
n log log sn)1/2

for all n ≥ 1 with a suitable constant κ. The result now follows from the
assumption (19).

Because of (19) we have∣∣∣∣∣
n∑

k=1

ξk

∣∣∣∣∣ −→∞, as n −→∞

and the second part follows from the first one. ¤
The additional assumption (19) in Corollary 1 is, for instance, fulfilled by

a non-negative sequence of functions gk with a uniformly bounded sequence
mk (note that in this situation (18) is obvious). We are going to apply these
probabilistic results on a sequence of functions gk, which has this property.

Let f be a function on the non-negative real numbers satisfying (12) and
(13).
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Because of Lemma 4, we know that we have h-a.e. for infinitely many k

(20)
∣∣∣∣α−

Pk

Qk

∣∣∣∣ <
f(k)
|Qk|2 .

Therefore, it is natural to consider the following set

Xn(α) := {0 ≤ k ≤ n|Pk/Qk is a solution of (20)}
for an integer n ≥ 0 and α ∈ H. The sequence (Xn)n≥0 can be viewed as a
sequence of random variables and we have the following asymptotic result:

Theorem 12. Let (Xn)n≥0 be as above and we put

F (n) =
n∑

k=0

qdlogq f(k)e

for n ≥ 0.

I. For a fixed real number ω we have

lim
n−→∞h

[
Xn − F (n) < ω(F (n))1/2

]
= Φ(ω)

II. We have h-a.e.

lim sup
n−→∞

1
(2F (n) log log F (n))1/2

(Xn(α)− F (n)) = 1.

lim inf
n−→∞

1
(2F (n) log log F (n))1/2

(Xn(α)− F (n)) = −1.

In particular we have h-a.e.

(21) Xn(α) ∼ F (n).

Proof. We define the following sequence of functions on P

gk(p) =
{ 1 if |p| > 1

f(k−1)

0 otherwise

for k ≥ 1. Because of the the properties of f , these functions are non-constant
and we have∑

p∈P

g2
k(p)q−2 deg p =

∑

p∈P,deg p>− logq f(k−1)

q−2 deg p

= q−[− logq f(k−1)] = qdlogq f(k−1)e < ∞.

We use the same notation as in Theorem 11 and get

(22) s2
n = F (n− 1)−

n−1∑

k=0

q2dlogq f(k)e = F (n− 1) + O(1).

Again, because of the properties of f , it follows from (22) that

(23) s2
n −→∞ , as n −→∞.
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Therefore, and because of the trivial fact that the sequence of functions gk

is uniformly bounded by 1, it follows for an arbitrary positive real constant
ε and n large enough that

|gk(p)− ξk| < εsn

for all integers k ≥ 1 and all p ∈ P . Hence, the Lindeberg condition in
the central limit theorem for formal Laurent series is true and this theorem
implies

lim
n−→∞h

[
n+1∑

k=1

gk(Ak)− F (n) < ω(F (n))1/2

]
= Φ(ω).

Because of

(24)
1

|Ak+1| > f(k) ⇐⇒
∣∣∣∣α−

Pk

Qk

∣∣∣∣ <
f(k)
|Qk|2

and the definition of gk, we have

n+1∑

k=1

gk(Ak) = Xn

and the first claimed result is proved.
The second result follows by an application of the law of iterated loga-

rithm for formal Laurent series on the sequence gk. Thereby, the boundary
condition on gk is trivially satisfied and the other assumptions follow from
(23). (notice that because of (22) one can replace s2

n in the law of iterated
logarithm for formal Laurent series by F (n− 1))

Moreover, it follows from (22) that (19) of Corollary 1 is satisfied and
hence (21) follows. ¤
Remark 1 Notice that Theorem 12 remains true, also when f fulfills the
following weaker assumptions

(25) 0 < f(x) ≤ 1, f(x) = O

(
1
x

)
,

∞∑

k=0

f(k) = ∞.

Remark 2. Because of (24) Xn(α) is also the number of 1 ≤ k ≤ n + 1 with

|Ak(α)| > 1
f(k − 1)

.

Therefore, Theorem 12 can be seen as a stronger version of the Lemma of
Borel-Cantelli for formal Laurent series for functions f with (25).
Remark 3. The constant function f(x) = c, where c ∈ (0, 1] is a real number,
doesn’t satisfy the assumptions but Theorem 12 is still true for this function.
The reason is that this situation is much more easier, because the involved
sequence of random variables is not only an independent sequence, but also
an equidistributed sequence of random variables.



METRIC DIOPHANTINE APPROXIMATION 15

Especially, in this case, we have a stronger version of (21), which follows
from the strong law of large numbers applied on the sequence of random
variables. In detail, we have h-a.e.

lim
n−→∞

1
n + 1

Xn(α) = qdlogq ce.

This can be also seen as follows:

The function k 7−→ |Qk||Qkα− Pk| has a limiting distribution h-a.e.

This was already pointed out in [2] and was in the classical case a conjec-
ture of H. W. Lenstra (with the exact limit distribution), which was proved
in [3].

The next two Lemmas are technical details for the proof of Theorem 9.
The first one is contained in [10]:

Lemma 6. For positive real constants c and λ, we have

f(k + O(k1−λ)) = f(k) + O(k−1−λ),(26)
cn∑

k=n+1

f(k) = O(1),(27)

n∑

k=0

cf(ck) =
n∑

k=0

f(k) + O(1).(28)

Proof. Lemma 1 in [10]. ¤

Lemma 7. I. There exists a real number λ ∈ (1/2, 1), such that for all real
constant κ, we have

n∑

k=0

qdlogq f(k+κk1−λ)e =
n∑

k=0

qdlogq f(k)e + O(1),(29)

n∑

k=0

qdlogq f(k−κk1−λ)e =
n∑

k=0

qdlogq f(k)e + O(1).(30)

II. For all positive real constants c, we have
cn∑

k=0

qdlogq f(k)e =
n∑

k=0

qdlogq f(k)e + O(1),(31)

∫ n

0
qdlogq f(x)edx =

n∑

k=0

qdlogq f(k)e + O(1),(32)

n∑

k=0

cqdlogq f(ck)e =
n∑

k=0

qdlogq f(k)e + O(1).(33)
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Proof. First, because of (26), we observe

f(k + κk1−λ) = f(k) + O(k−1−λ)

= f(k)
(

1 + O

(
k−1−λ

f(k)

))

= f(k)(1 + O(kε−λ))

(34)

and therefore, we chose λ > ε. Next we put

h(x) =
1

f(x)
and because of the assumptions on f , the function h is increasing and ≥ 1.
The definition of λ and (34) implies for large enough k

h(k) < qi =⇒ h(k + κk1−λ) < qi+1

where i ≥ 0 is an integer.
We have to find now an upper bound for the number of k with

(35) h(k) < qi ≤ h(k + κk1−λ)

for all integers i ≥ 1, because the elements in the sums on the right-hand
side and on the left-hand side of (29) differ exactly for this k.

Therefore, let ki for i ≥ 1 denote the smallest integer with the property
(35). Then, we see from the right-hand side of (35) that the number of k

with (35) is bounded by [κk1−λ
i ] + 2.

Furthermore, we have
qi > h(ki) À ki

and hence
ki ¿ qi.

Now, we can estimate the difference of the two sums in (29)
n∑

k=0

qdlogq f(k)e −
n∑

k=0

qdlogq f(k+κk1−λ)e ¿
∞∑

i=1

([κk1−λ
i ] + 2)q−i

¿
∞∑

i=1

(qi(1−λ) + 1)q−i

=
∞∑

i=1

q−iλ + O(1) = O(1)

and (29) is proved.
The proof of (30) is similar.
For the proof of (31), we have to make the following estimation

cn∑

k=n+1

qdlogq f(k)e < q
cn∑

k=n+1

f(k) = O(1)

where the last estimation follows from (27).



METRIC DIOPHANTINE APPROXIMATION 17

The proof of (32) is trivial and finally, the proof of (33) follows from

c
n∑

k=0

qdlogq f(ck)e = c

∫ n

0
qdlogq f(cx)edx + O(1)

with the substitution y = cx and applying (32) and (33). ¤
The last ingredient in the proof of Theorem 9 is a stronger version of

the Theorem of Khintchine-Levy for formal Laurent series (compare with
Lemma 4 in [10]).

Lemma 8. Let λ ∈ (1/2, 1) be an arbitrary real number. Then, we have
h-a.e., that there exist a positive real number κ, such that

(36)
∣∣∣∣deg Qk(α)− q

q − 1
k

∣∣∣∣ ≤ κk1−λ

for all k ≥ 0.

Proof. Easy consequence of the law of iterated logarithm for continued frac-
tions in [11] (Corollary 3). ¤

6. Proof of Theorem 9

We follow the ideas of the classical result in [10]. Therefore, we use the
notation of Theorem 12 and have

lim
n−→∞h[Xn < F (n) + ω(F (n))1/2] = Φ(ω).

Furthermore, we use λ from Lemma 7 I and consider the following random
variables

Yn,κ(α) = #
{

0 ≤ k ≤ n
∣∣∣
∣∣∣∣α−

Pk

Qk

∣∣∣∣ <
f(k + κk1−λ)

|Qk|2
}

,

Yn(α) = #
{

0 ≤ k ≤ n
∣∣∣
∣∣∣∣α−

Pk

Qk

∣∣∣∣ <
f(((q − 1)/q) deg Qk)

|Qk|2
}

,

where κ is an arbitrary positive constant, n ≥ 0 is an integer and α ∈ H.
We introduce the following sets

Bn,κ = {α ∈ H|Yn,κ(α)− F (n) < ω(F (n))1/2},
Bn = {α ∈ H|Yn(α)− F (n) < ω(F (n))1/2},
Cκ = {α ∈ H|α satisfies (36) with κ},

where ω is a real constant and denote by

Fκ(n) =
n∑

k=0

qdlogq f(k+κk1−λ)e.

Because of Lemma 6, we can apply Theorem 12 on the function f(k +
κk1−λ) and we get

(37) lim
n−→∞h[Yn,κ − Fκ(n) < ω(Fκ(n))1/2] = Φ(ω).
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Lemma 7 implies that F (n) = Fκ(n) + O(1) and therefore, we can replace
Fκ(n) in (37) by F (n). Hence

(38) lim
n−→∞h(Bn,κ) = Φ(ω)

for all positive real numbers κ.
Let now ε > 0 be a real constant. First, we can choose a real constant κ0

such that h(Cκ) ≥ 1− ε for all κ ≥ κ0 because of Lemma 8. Next, we fix κ ≥
κ0 and choose, because of (38), an integer n0 such that h(Bn,κ) ≤ Φ(ω) + ε
for all n ≥ n0.

It is easy to see that we have

Cκ ∩Bn ⊆ Bn,κ

and therefore, we get

h(Bn,κ) ≥ h(Cκ) + h(Bn)− 1.

An easy calculation shows

h(Bn) ≤ Φ(ω) + 2ε for n ≥ n0.

By using −κ in the definition of Yn,κ and similar arguments one gets for n
large enough

h(Bn) ≥ Φ(ω)− 2ε

and hence
lim

n−→∞h(Bn) = Φ(ω).

If we set now

Zn(α) = #
{

0 ≤ k ≤ n
∣∣∣
∣∣∣∣α−

Pk

Qk

∣∣∣∣ <
f(deg Qk)
|Qk|2

}

and

G(n) =
q − 1

q

n∑

k=0

qdlogq f(k)e,

then, we have also proved that

(39) lim
n−→∞h[Zn −G(n) < ω(G(n))1/2] = Φ(ω).

Of course if we start with the function f then, the assumptions for f are
also true for the function f( q

q−1x) and we can apply what we have already
proved. Finally, Lemma 7 (33) implies the claimed result.

Next, we consider the inequality

(40)
∣∣∣∣α−

P

Q

∣∣∣∣ <
f(deg Q)
|Q|2

and because of Lemma 1 (5) and the assumptions on f the random variable
Zn can be also viewed as follows

Zn(α) = #{(P, Q)|1 ≤ |Q| ≤ |Qn|, Q is monic, (P,Q) = 1,

and P/Q is a solution of (40)}
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We finish the proof by showing, that if someone replaces |Qn| in the
above definition by qn, (39) remains true. Therefore, we define the following
random variable

Vn,β = #{(P, Q)|1 ≤ |Q| ≤ qβn, Q is monic, (P,Q) = 1,

and P/Q is a solution of (40)},
where β is a positive real constant and we use Vn as a short form for Vn,1.
Furthermore, we define the following sets

Dn,β,ω = {α ∈ H|Vn,β(α)−G(n) < ω(G(n))1/2}
En,ω = {α ∈ H|Zn(α)−G(n) < ω(G(n))1/2}
FN = {α ∈ H|qn < |Qn| < q3n for all n ≥ N}

where N is a positive integer.
First, we observe that

FN ∩ En,ω ⊆ Dn,1,ω

for all n ≥ N . Then, we consider for a positive real constant η

G(n/3) + η(G(n/3))1/2 = G(n) + (η + O((G(n))−1/2))(G(n))1/2

where Lemma 7 (31) was used. Because of the assumptions on f , we have
that limn−→∞G(n) = ∞ and therefore, it follows, that for all positive real
constants δ there exists an index n0, such that

(41) G(n/3) + (ω + δ)(G(n/3))1/2 ≥ G(n) + ω(G(n))1/2

for all n ≥ n0. By (41) we have

Dn,1,ω ⊆ Dn/3,3,ω+δ

for all n ≥ n0. It is easy to see that we have

FN ∩Dn/3,3,ω+δ ⊆ E[n/3],ω+δ

for all n ≥ 3N .
If we now put everything together, we have

(42) FN ∩ En,ω ⊆ FN ∩Dn,1,ω ⊆ FN ∩Dn/3,3,ω+δ ⊆ FN ∩ E[n/3],ω+δ

for all positive real constants δ if n ≥ max{n0, 3N}.
Because of the fact

1 <
q

q − 1
< 3

the Khintchine-Levy Theorem 5 implies that

lim
N−→∞

h(FN ) = 1.

Therefore, we can conclude from (42) and from (39) that

Φ(ω) ≤ lim
n−→∞h(Dn,1,ω) ≤ Φ(ω + δ)

for all positive real constants δ. By considering δ −→ 0, we have

lim
n−→∞h[Vn −G(n) < ω(G(n))1/2] = Φ(ω).
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Finally, by multiplying both sides with q − 1 we get the desired result.
The rest of the Theorem is proved similar with the corresponding results

of Theorem 12. We give only a sketch of the proof.
First one apply Theorem 12 to the function f(k+κk1−λ) and use Lemma

7 (29) to get h-a.e.

(43) lim sup
n−→∞

1
(2F (n) log log F (n))1/2

(Yn,κ(α)− F (n)) = 1.

If we consider for κ only integers and intersect all sets, where (43) is true,
then we have h-a.e.

(44) lim sup
n−→∞

1
(2F (n) log log F (n))1/2

(Yn,k(α)− F (n)) = 1

for all k ∈ Z.
We now choose an α ∈ H with (44), which has the property (8). Then it

is easy to see that

lim sup
n−→∞

1
(2F (n) log log F (n))1/2

(Yn(α)− F (n)) = 1.

We can, as in the first part, replace the function f by f
(

q
q−1x

)
and it follows

h-a.e.

(45) lim sup
n−→∞

1
(2G(n) log log G(n))1/2

(Zn(α)−G(n)) = 1.

Because of the Khintchine-Levy Theorem 5, we have h-a.e.

qn < |Qn| < q3n

for n large enough and hence

Z[n/3](α) ≤ Vn(α) ≤ Zn(α)

for n large enough. By using this and Lemma 7 (32), we can replace Zn in
(45) by Vn and multiplying denominator and enumerator with q−1 give the
claimed result.

The second part of II is proved in the same manner and (15) is a simple
consequence of II. ¤

Remark 4. In [10], LeVeque only proved a central limit theorem and an
asymptotic formula for the number of solutions. A few years later, an iterated
logarithm law corresponding to (II) of Theorem 9 was added by Philipp [14].

We conclude the paper by giving an application of Theorem 9:
Example 2. We consider the function

f(x) =
{ 1 0 ≤ x ≤ 1

1
x x > 1

for which the assumptions are true. In this case, the inequality (14) has the
following form

(46)
∣∣∣∣α−

P

Q

∣∣∣∣ <
1

|Q|2 Logq|Q|
.
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It is easy to see that one has
n∑

k=1

q−[logq k] ∼ (q − 1) logq n

and therefore, Theorem 9 implies for the number of solutions of (46) h-a.e.

Wn(α) ∼ (q − 1)3

q
logq n.
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