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Abstract

We study the extra-clustering model for the group formation process of social animals when the
underlying phylogenetic tree is generated by the uniform model. Moments and limit laws for the
number of groups, the number of groups of fixed size and the largest group size are derived. Our re-
sults show that on average, there is only a finite number of groups one of which is very large whereas
all others are small. This behavior is compared with the results of Durand and Franco̧is (2010) and
Drmota, Fuchs and Lee (2014, 2016) who studied the extra-clustering model with phylogenetic trees
generated by the Yule-Harding model.

1 Introduction

The extra-clustering model, proposed by Durand et al. in [4], is a model for the group formation pro-
cess of social animals. Under this model, the number of groups Nn formed by n animals satisfies the
distributional recurrence: for n ≥ 2,

Nn
d
=

{
NIn +N∗n−In , if Kn = 0 and In 6∈ {1, n− 1};
1, if Kn = 1 or In ∈ {1, n− 1},

(1)

where N∗n is an independent copy of Nn, the sequences of random variables Kn, In, Nn, N
∗
n are inde-

pendent, Kn is a Bernoulli random variable with P(Kn = 1) = p and 0 ≤ p < 1, and In has throughout
this note the Catalan distribution:

P(In = j) =
Cj−1Cn−j−1

Cn−1
, 1 ≤ j ≤ n− 1, (2)

where Cn = 1
n+1

(
2n
n

)
denotes the n-th Catalan number. (That this is indeed a random distribution will

become clear below.)
We give a brief description of the aforementioned extra-clustering model which then will also explain

the above recurrence for the number of groups.
First, consider p = 0, where the model is called the neutral model. In this case, the model is based

on the assumption that the main (and in fact) only driving force behind the group formation process
∗All three authors are partially supported by the grants MOST-104-2923-M-009-006-MY3 and MOST-107-2115-M-009-

010-MY2
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(a) (b)

Figure 1: A phylogenetic tree representing the interrelationship of 5 animals (grey leaves; labels are
omitted). On the left, the two encircled nodes are the clade of the first or second leaf from the left;
note that this clade is not maximal since it is strictly contained in the clade of the third leaf from the
left. On the right, the two maximal clades of the tree (which arise from the third and forth or fifth leaf
from the left). So, if the the interrelationship of 5 animals is represented by this tree, then Nn = 2,
N

[2]
n = N

[3]
n = 1, N [m]

n = 0 for m ≥ 3, and Mn = 3.

is genetic relatedness; see [4]. Thus, we first need to understand the interrelationship between the n
animals which is done via phylogenetic trees, i.e., rooted, binary, leaf-labeled trees where we do not
consider a left-right order of the children of nodes and leaves represent the n animals; see Semple and
Steel [8] for a comprehensive introduction into properties of such trees and Figure 1 for an example
(where labels of leaves are omitted). A clade of a leaf of such a tree is the set of leaves contained in
the tree which is rooted at the parent of the leaf; see Figure 1, (a). The reason for considering clades
is that the leaves (resp. animals) from a clade can be considered to be all closely related. Of particular
interest are maximal clades, i.e., clades which are maximal under set inclusion in the poset of all clades;
see Figure 1, (b). The set of all maximal clades is taken to be the set of groups formed by the n animals
under the neutral model and its cardinality is denote by Nn (which so far is not random).

Of course, we usually do not have the phylogenetic tree representing the interrelationship of the n
animals and thus we need to resort to probabilistic tree reconstruction methods. More precisely, we will
consider random models on the set of all phylogenetic trees of size n. The most simple and basic models
for such random phylogenetic trees are the Yule-Harding model and the uniform model (also called PDA
model in the biological literature); see [8]. Properties of the (now random) Nn if the former model is
used where studied by Durand and Franco̧is [5] and Drmota et al. [2, 3]. In this paper, we are interested
in the latter model which assumes that each phylogenetic tree with n leaves is equally likely.

Note that the distribution of Nn for a random phylogenetic tree of size n does not change if one
considers a left-right order of the children of the nodes in trees and also if one ignores the labels of
the leaves; see for instance the discussion in Blum et al. [1] where this was also used. Thus, we will
from now on (with a slight abuse of notation) consider phylogenetic trees as rooted, binary with children
of nodes having a left-right order and leaves having no labels. It is a basic combinatorial fact that the
number of such trees with n leaves is given by Cn−1. Thus, under the uniform model, each tree with n
leaves has probability 1/Cn−1 and the probability that the left subtree has size j is given by (2) since
there are exactlyCj−1Cn−j−1 trees whose left subtree has size j. (This now also shows that (2) is indeed
a random distribution.)

We can now explain the above distributional recurrence for the number of groups Nn. Recall, that
Nn is the number of maximal clades of a random phylogenetic tree of size n under the uniform model.
It is immediate that this number can be computed as the sum of the number of maximal clades of the
left and right subtree unless all leaves are in one maximal clade. This, together with the fact that if the
left subtree size equals j, then left and right subtree are independent random phylogenetic trees of size
j and n− j, respectively, explains the above distributional recurrence for p = 0. (In particular, note that
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in this case, we have Kn ≡ 0.)
Next, we are going to explain the more general extra-clustering model. Recall that, as just explained,

the neutral model is based on the assumption that the only reason for animals to form groups is genetic
relatedness. Whereas for some types of social animals this assumption is reasonable, for others it is
not; see [4] where this was discussed with real-world data. In order to take into account other factors
which cause animals to form groups (and also in order to devise statistical tests to test whether or not
the neutral model is appropriate), the authors in [4] introduced the more general extra-clustering model.
Here, one in addition has a probability p which measures the degree of which other factors are decisive
in the group formation process. According to this probability, in each step of the recursive procedure
to compute Nn, it may happen independently from everything else that an extra-clustering event occurs
which means all the remaining animals are in one cluster. These extra-clustering events are modeled
via the random variable Kn in (1) which was the last un-explained piece in (1). Thus, the distributional
recurrence for Nn is now fully explained.

In [2, 3, 5], moments and limit laws of Nn for the Yule-Harding model were studied. Here, we will
prove corresponding results for Nn as well as for more refined characteristics of the group formation
process under the extra-clustering model with uniformly chosen random phylogenetic trees, i.e., for the
uniform model.

The paper is organized as follows. In the next section, we introduce the so-called cluster tree and
will associate two important generating functions with it. This will then be used in Section 3 to derive
limit distribution results for Nn and the number of groups containing exactly m animals where m ≥ 2.
Finally, in Section 4 we will study moments and the limit distribution of the largest group size. We will
conclude in Section 5 by comparing the results from this paper with those for the Yule-Harding model
from previous works.

2 Cluster Trees and Weights

In order to find moments of Nn, one could work with the distributional recurrence (1). However, we
will use a more combinatorial method which will turn out to be advantageous when dealing with more
refined properties of the group formation process.

First, note that the definition of the extra-clustering model can be broken into two probabilistic
stages: (i) a phylogenetic tree of size n is picked uniformly at random and (ii) the picked tree is traced
starting from the root and one stops if either a node is encountered whose left or right subtree is a leaf or
an extra clustering event has occurred. In the second step, we replace the subtrees at the places where one
has stopped by leaves and call the resulting tree a cluster tree of the picked tree. Note that cluster trees
are again rooted, binary trees with children having a left-right order and leaves not labeled. Moreover,
note that they are not unique but rather depend on the outcome of the probabilistic procedure in Step (ii)
above; see Figure 2 for all the possible cluster trees associated with the tree from Figure 1.

Now, in order to keep track of the probabilities attached to cluster trees, we associate two generating
functions with them. First, since no extra-clustering event has occurred at any internal node of a cluster
tree, we attach the probability q := 1− p to these nodes, i.e., we consider

G(z) :=
∑
n≥1

qn−1Cn−1z
n = zC(qz),

where C(z) is the ordinary generating function of the Catalan numbers (see, e.g., Page 34 and 35 in [6]):

C(z) =
1−
√

1− 4z

2z
.

Next, for the leaves of the cluster tree, they either resulted from an extra-clustering event (in which
case we have to attach the weight p to them and there are Cn−1 possible trees) or they have been nodes
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(a) (b)

qp2 + 2q2p+ q3

(c)

p

Figure 2: The phylogenetic tree from Figure 1 together with its cluster trees in (b) and (c). The tree
is traced from the root until extra-clustering events occur and/or the grey internal nodes are reached
(which are the parents of the leafs whose clades are maximal). The shapes of all possible cluster trees
are in (b) and (c): the one in (b) occurs 4 times (depending on whether there are extra-clustering events
at the leaves or not) and the one in (c) only occurs if there is an extra-clustering event at the root. The
probabilities are indicated below the shapes (in (b) it is the sum of the four probabilities) and as explained
in the paragraph preceding Lemma 1 they indeed sum up to 1.

in the original phylogenetic tree with either one or two children as leaves (in this case, we use the weight
q and the number of trees is either 2Cn−2 in the former case or 1 in the latter case). Thus, for each single
leaf of the cluster tree, we consider the generating function

H(z) : = (pC1 + q)z2 +
∑
n≥3

(pCn−1 + 2qCn−2)z
n

= z2 + pz(C(z)− 1− z) + 2qz2(C(z)− 1).

Now, the composition of these two generating functions, namely, G(H(z)) generates for any phy-
logenetic trees all its associated cluster trees with their corresponding probabilities. In particular, since
for each phylogenetic tree the probabilities of its cluster trees sum up to 1, we have

[zn]G(H(z) = Cn−1, (n ≥ 2)

and [z]G(H(z)) = 0 because all the phylogenetic trees have at least two leaves. We formulate this as a
lemma.

Lemma 1. For all 0 ≤ p < 1, we have

G(H(z)) = z(C(z)− 1).

3 Number of Groups and Number of Fixed-Size Groups

The two generating functions from the previous section become really useful only if one introduces a
second variable, say u, which keeps track of the number of leafs of the cluster trees which by definition
is the number of groups under the extra-clustering model. More precisely, we consider now G(uH(z)).
By the above description, this generating function is related to the distribution of Nn via

P(Nn = k) =
[ukzn]G(uH(z))

Cn−1
,

where the denominator incorporates the probability from Step (i) of the stochastic description of the
extra-clustering model from the beginning of the last section and G(uH(z)) incorporates the probabili-
ties from Step (ii).
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Limit laws for random variables arising in the above way from a composition of generating functions
have been studied before in the literature; see Flajolet and Sedgewick [6]. We recall here one such result
which we will use in the sequel. To state the result, we need some notations.

Assume that g(z) and h(z) are two generating functions with non-negative coefficients and h(0) =
0. Denote the radii of convergence of g(z) and h(z) by ρg and ρh, respectively. Moreover, set

τg := lim
z→ρg−

g(z) and τh := lim
z→ρh−

h(z).

Then, the following result holds.

Theorem 1 (Proposition IX.1 in [6]). Assume that τh < ρg. Moreover, assume that ρh is finite and that
z = ρh is the only singularity of h(z) on the circle of convergence. Finally, assume that

h(z) = τh − c
(

1− z

ρh

)λ
+ o

((
1− z

ρh

)λ)
,

where c is a positive real number, 0 < λ < 1 and the above asymptotics holds for z in

∆ := {z : |z| < r and | arg(z − ρh)| > φ},

where r > 1 and 0 < φ < π/2.
Then, for the sequence of random variables defined by

P(Xn = k) :=
[ukzn]g(uh(z))

[zn]g(h(z))
,

we have the limit distribution result
Xn

d−→ X

with convergence of all moments, where X is a discrete random variable with probability generating
function:

PX(u) =
ug′(uτh)

g′(τh)
.

The proof of this result follows from singularity analysis, where the dominant singularity (the one
closest to the origin) of g(h(z)) comes from the dominant singularity of h(z) since τh < ρg; for details
see [6] and the proof of Theorem 3 below. The condition τh < ρg is the so called subcritical case and
one usually refers to f(ug(z)) as subcritical composition schema.

In fact, G(uH(z)) is also a subcritical composition schema and thus the limit distribution of Nn

follows from the above result.

Theorem 2. We have the limit distribution result

Nn
d−→ N

with convergence of all moments, where

N
d
= NB

(
1

2
,
3− 2p− p2

4

)
+ 1.

Here, NB(r, p) denotes the negative binomial distribution.

Remark 1. NB in the above theorem is more precisely the (standard) generalization of the negative
binomial distribution to the case where the first parameter is allowed to be any positive real number.
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Proof. First, note that

ρH =
1

4
, ρG =

1

4q
and τH =

3 + p

16
, τG =

1

2q
.

Since
τH =

3 + p

16
<

1

4
≤ 1

4q
= ρG,

G(uH(z)) is indeed a subcritical composition schema. Moreover, by a straightforward expansion

H(z) =
3 + p

16
− 1 + p

4

√
1− 4z + o(

√
1− 4z)

in a suitable ∆-domain.
Thus, by applying the proposition, we obtain the claimed result with the probability generating

function of N given by

PN (u) = u

√
1− 4qτH

1− 4qτHu
.

From this, it is clear that N has the claimed distribution.
Remark 2. The previous theorem can also be proved by deriving the asymptotics of all moments of Nn

which can be done in a recursive way since it follows from (1) that all moments satisfy the same type
of recurrence. Then, the above result also follows since the negative binomial distribution is uniquely
determined by its moment sequence; see, e.g., [2, 3] where such a recursive approach was employed to
prove limit distribution results (but with other limiting distributions).

As a corollary, we obtain the following.

Corollary 1. We have,

E(Nn) ∼ 5 + 2p+ p2

2 + 4p+ 2p2
.

Thus, on average, there are only a finite number of groups.
Next, we fix m ≥ 2 and consider the number of groups of size m which we denote by N [m]

n ; see the
description of Figure 1 for an example. In order to understand the distribution of this random variable
we can again use the two generating functions G(z) and H(z). However, this time we only mark with u
those leaves of the cluster tree which correspond to groups of size m, i.e., only the coefficient of [zm] in
H(z). Thus, we consider

G((pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z)),

were δ2,m is the Kronecker delta function. Then,

P(N [m]
n = k) =

[ukzn]G((pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z))

Cn−1
.

In order to find the limit distribution of N [m]
n , we cannot directly apply Theorem 1. However, the

method of proof of Theorem 1 can be applied and yields the following result.

Theorem 3. We have the limit distribution result

N [m]
n

d−→ N [m]

with convergence of all moments, where

N [m] d
= NB

(
1

2
,

42−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

1 + 2p+ p2 + 42−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

)
.

Proof. Let
Hm(u, z) = (pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z)
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which has dominant singularity at z = 1/4. By a straightforward expansion, as z → 1/4,

Hm(u, z) = cm(u)− 1 + p

4

√
1− 4z + o(

√
1− 4z),

where
cm(u) = (pCm−1 + (2− δ2,m)qCm−2)(u− 1)4−m +

3 + p

16
.

Note that for u close to 1, we have

|cm(u)| < 1

4q

and the upper bound is the dominant singularity of G(z). Thus, G(Hm(u, z)) has also dominant singu-
larity at z = 1/4. Moreover, as z → 1/4,

G(Hm(u, z)) =
1−

√
1− 4qcm(u)

2q
− 1 + p

4
√

1− 4qcm(u)

√
1− 4z + o(

√
1− 4z).

Now, by the transfer theorems of singularity analysis (see Chapter VI in [6]),

[zn]G(Hm(u, z)) ∼ 1 + p

8
√
π
√

1− 4qcm(u)
· 4n

n3/2

and by using the well-known expansion of the Catalan numbers

Cn =
4n

√
πn3/2

(
1 +O

(
1

n

))
, (3)

we obtain that
P
N

[m]
n

(u) ∼ 1 + p

2
√

1− 4qcm(u)
,

where P
N

[m]
n

(u) denotes the probability generating function of N [m]
n . From this the claimed result

follows by standard results from probability theory.

Remark 3. Again this result can alternatively be proved via the asymptotics of moments since N [m]
n

satisfies the following distribution recurrence: for n > m,

N [m]
n =

{
N

[m]
In

+ (N
[m]
n−In)∗, with probability 1− p and In 6∈ {1, n− 1};

0, otherwise,

where notation is as in (1) and initial conditions are given by N [m]
n = 0 if n < m and

N [m]
m =

{
0, with probability 1− p and Im 6∈ {1,m− 1};
1, otherwise.

As a consequence, we again obtain the asymptotics of the mean.

Corollary 2. We have,

E(N [m]
n ) ∼ 2

41−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

1 + 2p+ p2
.

Corollary 1 and Corollary 2 now imply the following proposition.

Proposition 1. We have,
E(N) = 1 +

∑
m≥2

E(N [m]).

Proof. This is proved by a straightforward computation (probably best done with mathematical software
such as Maple).

This suggests that there is only one big group and all other groups are small. That this is indeed the
case will be proved in the next section.
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4 Largest Group Size

Denote by Mn the largest size of the groups (i.e. largest size of the maximal clades) of a random
phylogenetic tree of size n under the uniform model; e.g., for the tree in Figure 1 we have Mn = 3. Due
to the above observation that there should be one big group, we set Xn := n−Mn.

In order to find the distribution of Xn, we again make use of the above two generating functions for
the cluster tree. The main observation is that for 0 ≤ k < n/2, we have

P(Xn = k) =
[zk]G′(H(z))[zn−k]H(z)

Cn−1

which is explained as follows: since the largest group size is equal to n− k, we have to replace one leaf
of the cluster tree by a group of size n − k (this is the factor [un−k]H(z)), whereas all other leaves are
replaced by arbitrary groups (this is the factor [zk]G′(H(z))); note that the restriction 0 ≤ k < n/2 is
essential here, because it ensures that all other groups are indeed of size smaller than n− k. Moreover,
the range 0 ≤ k < n/2 is expected to be sufficient for our purpose since we expect that the largest group
size is close to n.

We start with the following lemma.

Lemma 2. Uniformly for 0 ≤ k < n/2, we have

P(Xn = k) =
1 + p

2
4−k[zk]G′(H(z))

(
1− k

n

)−3/2(
1 +O

(
1

n

))
.

Proof. Note that
[zn−k]H(z) = pCn−k−1 + 2qCn−k−2.

The result follows from this by a standard computation using (3).
From the last lemma, we obtain the limit distribution of Xn.

Theorem 4. We have the limit distribution result

Xn
d−→ X,

where X is a discrete random variable with probability generating function

PX(u) =
∑
k≥0

pku
k =

1 + p

2F (u/4)
.

Here,

F (u) =

√
1− 2p+ 2p2 − 4(1− 2p)(1− p)z + 4(1− p)2z2 − 2(1− p)(p− 2(1− p)z)

√
1− 4u.

(4)

Proof. From Lemma 2, we have for fixed k

pk := lim
n→∞

P(Xn = k) =
1 + p

2
4−k[zk]G′(H(z)).

Thus,

PX(u) =
∑
k≥0

pkz
k =

1 + p

2
G′(H(u/4))

and the claimed form follows now by plugging into this the expressions for G(z) andH(z) and straight-
forward computation.
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Remark 4. Note that F (u) has dominant singularity at u = 1/4. Moreover, as u→ 1/4,

PX(u) = 1− 2(1− p)
1 + p

√
1− u+ o(

√
1− u).

From this, we obtain by the transfer theorems of singularity analysis,

pk =
1− p

(1 + p)
√
πk3/2

(
1 +O

(
1

k

))
, (k →∞). (5)

Remark 5. Note that all moments of X are infinite. Thus, in contrast to Theorem 2 and Theorem 3, we
do not have moment convergence in the above limit theorem for the largest group size.

Due to the latter remark, it is interesting to compute moments of Xn (and thus of Mn). We will do
this next with the help of Lemma 2, (5) and the Euler-Maclaurin summation formula (for the latter see,
e.g., Chapter 9 of Graham et al. [7]). We first need the following (crucial) lemma.

Lemma 3. We have, ∑
0≤k<n/2

P(Xn = k) = 1 + o(n−1/2) (6)

and for ` ≥ 1 ∑
0≤k<n/2

k`P(Xn = k) ∼ d`n`−1/2 (7)

where

d` =
1− p

(1 + p)
√
π

∫ 1/2

0
x`−3/2(1− x)−3/2dx.

Proof. We will derive the asymptotics of the sum in (6) by splitting it into two parts:∑
0≤k<n/2

P(Xn = k) =
∑

0≤k<nρ
P(Xn = k) +

∑
nρ≤k<n/2

P(Xn = k), (8)

where ρ > 0 will be chosen as the proof proceeds.
For the first part, we have by Lemma 2,∑

0≤k<nρ
P(Xn = k) =

∑
0≤k<nρ

pk(1 +O(nρ−1)) =
∑

0≤k<nρ
pk(1 + o(n−1/2)),

where pk was defined in Theorem 4 and ρ < 1/2 so that the last equality holds. Note that∑
0≤k<nρ

pk = 1−
∑
k≥nρ

pk = 1− 1− p
(1 + p)

√
π

∑
k≥nρ

k−3/2(1 +O(1/k)),

where we used (5) in the last step. Combining the two equations above, we get∑
0≤k<nρ

P(Xn = k) = 1− 1− p
(1 + p)

√
π

∑
k≥nρ

k−3/2(1 +O(1/k)) + o(n−1/2). (9)

The asymptotic of the sum on the right-hand side of the equation can be derived by using the Euler-
Maclaurin summation formula:∑

k≥nρ
k−3/2 =

∫ ∞
nρ

x−3/2dx+O(n−3ρ/2) = 2n−ρ/2 + o(n−1/2),
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where the last step holds whenever ρ > 1/3. The asymptotic of the O-term in (9) can be derived in a
similar manner. Thus, we obtain that∑

0≤k<nρ
P(Xn = k) = 1− 2(1− p)

(1 + p)
√
π
n−ρ/2 + o(n−1/2). (10)

Now, we turn to the second part of the decomposition of (8) for which we use the expansions from
Lemma 2 and (5):∑

nρ≤k<n/2

P(Xn = k) =
1− p

(p+ 1)
√
π

∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2(1 +O(1/k)). (11)

Using again Euler-Maclaurin summation formula,∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2 =

∫ n/2

nρ
x−3/2(1− x/n)−3/2dx+ o(n−1/2).

Note that ∫
x−3/2(1− x/n)−3/2dx =

2(2x− n)√
nx(n− x)

and thus ∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2 = 2n−ρ/2 + o(n−1/2).

Together with a similar treatment of the O-term in (11), we obtain that∑
nρ≤k<n/2

P(Xn = k) =
2(1− p)

(1 + p)
√
π
n−ρ/2 + o(n−1/2). (12)

Finally, substituting (10) and (12) into (8) gives the desired result.
Next, we proceed to the proof of (7). In a similar manner, we split the sum into∑

0≤k<n/2

k`P(Xn = k) =
∑

0≤k<nρ
k`P(Xn = k) +

∑
nρ≤k<n/2

k`P(Xn = k), (13)

where ρ is again chosen as the proof proceed.
For the first term on the right-hand side of (13):∑

0≤k<nρ
k`P(Xn = k) ≤ nρ` = o(n`−1/2),

where the last step holds when ρ < 1/2.
For the second term on the right-hand side of (13), we again apply the expansions in Lemma 2 and

(5): ∑
nρ≤k<n/2

k`P(Xn = k) =
1− p

(1 + p)
√
π

∑
nρ≤k<n/2

k`−3/2(1− k/n)−3/2(1 +O(1/k)). (14)

Using once more Euler-Maclaurin summation formula yields∑
nρ≤k<n/2

k`−3/2(1− k/n)−3/2 =

∫ n/2

nρ
x`−3/2(1− x/n)−3/2dx+ o(n`−1/2)

=

∫ n/2

0
x`−3/2(1− x/n)−3/2dx+ o(n`−1/2)

=

(∫ 1/2

0
x`−3/2(1− x)−3/2dx

)
n`−1/2 + o(n`−1/2).
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The O-term in (14) is treated similarly.
Finally, substituting the above two equations into (13) gives the desired result.
From this lemma, we obtain now the asymptotics of all moments of Xn.

Theorem 5. For ` ≥ 1, we have
E(X`

n) ∼ d`n`−1/2,

where d` is as in Lemma 3.

Proof. Since

E(X`
n) =

∑
0≤k≤n

k`P(Xn = k) =
∑

0≤k<n/2

k`P(Xn = k) +
∑

n/2≤k≤n

k`P(Xn = k)

we only need to show that the second term is o(n`−1/2). This follows directly from

∑
n/2≤k≤n

k`P(Xn = k) ≤ n`
1−

∑
0≤k<n/2

P(Xn = k)

 = o(n`−1/2),

where (6) is used in the last estimate.
As a corollary, we obtain the asymptotics of moments of the maximal group size Mn.

Corollary 3. We have,

E(Mn) = n− 2(1− p)
(1 + p)

√
π
n1/2 + o(n1/2)

and for ` ≥ 2
E(Mn − E(Mn))` ∼ (−1)`d`n

`−1/2,

where d` is as in Lemma 3.

5 Conclusion

In this paper, we considered the number of groups, number of fixed-size groups and the largest group
size of the extra clustering model with uniformly distributed phylogenetic trees. For all these random
variables, we derived limit laws and computed moments. Our results show that on average, there is only
a finite number of groups and that one of these groups contains almost all animals (and thus all the others
are small). This holds for all p with 0 ≤ p < 1.

Our results have to be compared with those for the extra clustering model where the phylogenetic
trees are generated by the Yule-Harding model; see [5] and [2, 3]. In particular, in [5], the following
asymptotics for the mean of number of groups (again denoted by Nn) was proved:

E(Nn) =



c(p)

Γ(2(1− p))
n1−2p, if 0 ≤ p < 1/2;

log n

2
, if p = 1/2;

p

2p− 1
, if 1/2 < p < 1,

where

c(p) =
1

e2(1−p)

∫ 1

0
(1− t)−2pe2(1−p)t

(
1− (1− p)t2

)
dt.
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Thus, for the Yule-Harding model, the number of groups is on average finite if and only if p > 1/2. In
all other cases, the number of groups is growing as n tends to infinity.

Higher moments and limit laws of Nn where discussed in [2, 3], where the authors proved that the
limit law for p = 0 is continuous, for 0 < p < 1/2 it is a mixture of a continuous and discrete random
variables and only for p ≥ 1/2 it becomes discrete. On the other hand, for the uniform model we proved
in this paper that it is always discrete. Moreover, one also has convergence of all moments which in the
Yule-Harding model was only the case for 0 < p < 1/2 and 1/2 < p < 1.

For the number of fixed-sized groups in the Yule-Harding model, only the mean was considered so
far. For example, in [5], the authors showed that for 0 ≤ p < 1/2, the mean is again of order n1−2p.
Using the tools from [2, 3], higher moments and limit laws for the number of fixed-sized groups could
be added as well (also for the range p ≥ 1/2).

However, of possible greater interest would be a study of the largest group size in the Yule-Harding
model, in particular, because it was claimed in [5] that the “typical” group size is of order log n in the
neutral model (p = 0) and of order n in the extra clustering model with p > 0. Whether or not a similar
sharp transition also holds for the maximal group size is an open problem.
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