Limit Laws for Patterns in Ranked Tree-Child Networks (joint with H. Liu and T.-C. Yu)

Michael Fuchs

Department of Mathematical Sciences National Chengchi University

September 6th, 2022

Phylogenetic Trees

$X \ldots$ a finite set.

Phylogenetic Trees

$X \ldots$ a finite set.
Theorem
A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled by X.

Phylogenetic Trees

X ... a finite set.
Theorem
A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled by X.
$\mathrm{T}_{n} \ldots$. \# of phylogenetic trees with n leaves.

Phylogenetic Trees

X ... a finite set.

Theorem

A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled by X.
$\mathrm{T}_{n} \ldots$. \# of phylogenetic trees with n leaves.

Theorem (Schröder; 1870)
We have,

$$
\mathrm{T}_{n}=(2 n-3)!!
$$

Thus, as $n \rightarrow \infty$,

$$
\mathrm{T}_{n} \sim \frac{1}{\sqrt{2}}\left(\frac{2}{e}\right)^{n} n^{n-1}
$$

Patterns in Phylogenetic Trees (i)

$P \ldots$ a rooted, non-plane, binary tree with k (unlabeled) leaves.

Patterns in Phylogenetic Trees (i)

$P \ldots$ a rooted, non-plane, binary tree with k (unlabeled) leaves.
Question: how often does P appear in a random phylogenetic tree as fringe subtree?

Patterns in Phylogenetic Trees (i)

$P \ldots$ a rooted, non-plane, binary tree with k (unlabeled) leaves.
Question: how often does P appear in a random phylogenetic tree as fringe subtree?

Random Models:

- Uniform model: every phylogenetic tree of size n is equally likely;
- Yule-Harding model: defined via a tree evolution process.

Patterns in Phylogenetic Trees (i)

$P \ldots$ a rooted, non-plane, binary tree with k (unlabeled) leaves.
Question: how often does P appear in a random phylogenetic tree as fringe subtree?

Random Models:

- Uniform model: every phylogenetic tree of size n is equally likely;
- Yule-Harding model: defined via a tree evolution process.

Theorem

Expected value and variance of the number X_{n} of occurrences of P are both linear. Moreover,

$$
\frac{X_{n}-\mathbb{E}\left(X_{n}\right)}{\sqrt{\operatorname{Var}\left(X_{n}\right)}} \xrightarrow{d} N(0,1) .
$$

Patterns in Phylogenetic Trees (ii)

$X_{n, k} \ldots$ \# of occurrences of a pattern of size k in a random phylogenetic tree of size n.

Patterns in Phylogenetic Trees (ii)

$X_{n, k} \ldots$ \# of occurrences of a pattern of size k in a random phylogenetic tree of size n.

Theorem (Chang and F.; 2010)
(i) As $\mathbb{E}\left(X_{n, k}\right) \rightarrow \infty$,

$$
\sup _{-\infty<x<\infty}\left|P\left(\frac{X_{n, k}-\mathbb{E}\left(X_{n, k}\right)}{\sqrt{\operatorname{Var}\left(X_{n, k}\right)}} \leq x\right)-\Phi(x)\right|=\mathcal{O}\left(\frac{1}{\sqrt{\operatorname{Var}\left(X_{n, k}\right)}}\right)
$$

Patterns in Phylogenetic Trees (ii)

$X_{n, k} \ldots$ \# of occurrences of a pattern of size k in a random phylogenetic tree of size n.

Theorem (Chang and F.; 2010)
(i) As $\mathbb{E}\left(X_{n, k}\right) \rightarrow \infty$,

$$
\sup _{-\infty<x<\infty}\left|P\left(\frac{X_{n, k}-\mathbb{E}\left(X_{n, k}\right)}{\sqrt{\operatorname{Var}\left(X_{n, k}\right)}} \leq x\right)-\Phi(x)\right|=\mathcal{O}\left(\frac{1}{\sqrt{\operatorname{Var}\left(X_{n, k}\right)}}\right)
$$

(ii) As $k \rightarrow \infty$,

$$
d_{\mathrm{TV}}\left(X_{n, k}, \operatorname{Poisson}\left(\mathbb{E}\left(X_{n, k}\right)\right)\right) \longrightarrow 0, \quad(n \rightarrow \infty)
$$

Patterns in Phylogenetic Trees (ii)

$X_{n, k} \ldots$ \# of occurrences of a pattern of size k in a random phylogenetic tree of size n.

Theorem (Chang and F.; 2010)

(i) As $\mathbb{E}\left(X_{n, k}\right) \rightarrow \infty$,

$$
\sup _{-\infty<x<\infty}\left|P\left(\frac{X_{n, k}-\mathbb{E}\left(X_{n, k}\right)}{\sqrt{\operatorname{Var}\left(X_{n, k}\right)}} \leq x\right)-\Phi(x)\right|=\mathcal{O}\left(\frac{1}{\sqrt{\operatorname{Var}\left(X_{n, k}\right)}}\right)
$$

(ii) As $k \rightarrow \infty$,

$$
d_{\mathrm{TV}}\left(X_{n, k}, \operatorname{Poisson}\left(\mathbb{E}\left(X_{n, k}\right)\right)\right) \longrightarrow 0, \quad(n \rightarrow \infty)
$$

H. Chang and M. Fuchs (2010). Limit theorems for patterns in phylogenetic trees, J. Math. Biol., 60:4, 481-512.

Phylogenetic Networks

X ... a finite set.

Phylogenetic Networks

X ... a finite set.

Definition
A phylogenetic network is a rooted DAG which has the following nodes:

Phylogenetic Networks

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:
(a) root: in-degree 0 and out-degree 1 ;

Phylogenetic Networks

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;

Phylogenetic Networks

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;
(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic Networks

X ... a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:
(a) root: in-degree 0 and out-degree 1;
(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;
(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.
They are used to model reticulate evolution which contains reticulation events caused by, e.g., lateral gene transfer or hybridization.

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

Examples:

(a)

(b)

TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

Examples:

Figure: (a) is not a tc-network whereas (b) is a tc-network.

Enumeration and Pattern Counting in TC-Networks

$\mathrm{TC}_{n} \ldots$.. of tc-networks with n leaves.

Enumeration and Pattern Counting in TC-Networks

$\mathrm{TC}_{n} \ldots$.. of tc-networks with n leaves.
Theorem (F., Yu, Zhang; 2021)
We have,

$$
\mathrm{TC}_{n}=\Theta\left(n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n}\right)
$$

where a_{1} is the largest root of the Airy function of first order.

Enumeration and Pattern Counting in TC-Networks

$\mathrm{TC}_{n} \ldots$.. \# of tc-networks with n leaves.
Theorem (F., Yu, Zhang; 2021)
We have,

$$
\mathrm{TC}_{n}=\Theta\left(n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n}\right)
$$

where a_{1} is the largest root of the Airy function of first order.

Theorem (McDiarmid, Semple, Welsh; 2015)
The number of cherries is o(n) for almost all tc-networks.

Enumeration and Pattern Counting in TC-Networks

$\mathrm{TC}_{n} \ldots$ \# of tc-networks with n leaves.
Theorem (F., Yu, Zhang; 2021)
We have,

$$
\mathrm{TC}_{n}=\Theta\left(n^{-2 / 3} e^{a_{1}(3 n)^{1 / 3}}\left(\frac{12}{e^{2}}\right)^{n} n^{2 n}\right)
$$

where a_{1} is the largest root of the Airy function of first order.

Theorem (McDiarmid, Semple, Welsh; 2015)
The number of cherries is $o(n)$ for almost all tc-networks.

Theorem (Chang, F., Liu, Wallner, Yu; 2023+)
We have,

$$
\mathbb{E}(\# \text { of cherries })=\mathcal{O}(1)
$$

Ranked TC-Networks (i)

F. Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic properties of ranked tree-child networks, Random Struc. Algor., 60:4, 653-689.

Ranked TC-Networks (i)

F. Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic properties of ranked tree-child networks, Random Struc. Algor., 60:4, 653-689.

Define two types of events:

Ranked TC-Networks (i)

F. Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic properties of ranked tree-child networks, Random Struc. Algor., 60:4, 653-689.

Define two types of events:

(a)

(b)

Definition

A ranked tc-network is a tc-network which is drawn starting with a branching event and consecutively adding either a branching event or a reticulation event until all events are used.

Ranked TC-Networks (ii)

Ranked TC-Networks (ii)

Question: which tc-networks are rankable?

Ranked TC-Networks (ii)

(a)

(b)

Question: which tc-networks are rankable?
Theorem (Bienvenu, Lambert, Steel; 2022)
The number of rankable tc-networks with n leaves is $o\left(\mathrm{TC}_{n}\right)$.

Counting Ranked TC-Networks (i)

$\mathrm{RTC}_{n, k} \ldots$ \# of ranked tc-networks with k reticulation nodes.

Counting Ranked TC-Networks (i)

$\mathrm{RTC}_{n, k} \ldots$ \# of ranked tc-networks with k reticulation nodes.
Theorem (Bienvenu, Lambert, Steel; 2022)
We have,

$$
\operatorname{RTC}_{n, k}=\left[\begin{array}{c}
n-1 \\
n-1-k
\end{array}\right] \cdot \frac{n!(n-1)!}{2^{n-1}}
$$

where $\left[\begin{array}{c}n-1 \\ n-1-k\end{array}\right]$ denotes the unsigned Stirling numbers of first kind and $n!(n-1)!/ 2^{n-1}$ is the number of ranked trees.

Counting Ranked TC-Networks (i)

$\mathrm{RTC}_{n, k} \ldots$ \# of ranked tc-networks with k reticulation nodes.
Theorem (Bienvenu, Lambert, Steel; 2022)
We have,

$$
\operatorname{RTC}_{n, k}=\left[\begin{array}{c}
n-1 \\
n-1-k
\end{array}\right] \cdot \frac{n!(n-1)!}{2^{n-1}}
$$

where $\left[\begin{array}{c}n-1 \\ n-1-k\end{array}\right]$ denotes the unsigned Stirling numbers of first kind and $n!(n-1)!/ 2^{n-1}$ is the number of ranked trees.

Corollary

We have,

$$
\frac{\# \text { of reticulation nodes }-n+\log n}{\sqrt{\log n}} \xrightarrow{d} N(0,1)
$$

Counting Ranked TC-Networks (ii)

$\mathrm{RTC}_{n} \ldots$ \# of ranked tc-networks with n leaves.

Counting Ranked TC-Networks (ii)

$\mathrm{RTC}_{n} \ldots$ \# of ranked tc-networks with n leaves.
Corollary
We have,

$$
\operatorname{RTC}_{n}=\frac{n!(n-1)!^{2}}{2^{n-1}}
$$

Counting Ranked TC-Networks (ii)

$\mathrm{RTC}_{n} \ldots$ \# of ranked tc-networks with n leaves.

Corollary

We have,

$$
\operatorname{RTC}_{n}=\frac{n!(n-1)!^{2}}{2^{n-1}}
$$

This is A167484 in the OEIS (www.oeis.org):
Assume that n people are on one side of a river. Then, this sequences is the number of ways to cross to the other side with a two-person boat if the crossings follow the pattern 2 sent, 1 returns, 2 sent, 1 returns, ..., 2 sent.

Counting Ranked TC-Networks (ii)

$\mathrm{RTC}_{n} \ldots$ \# of ranked tc-networks with n leaves.

Corollary

We have,

$$
\operatorname{RTC}_{n}=\frac{n!(n-1)!^{2}}{2^{n-1}}
$$

This is A167484 in the OEIS (www.oeis.org):
Assume that n people are on one side of a river. Then, this sequences is the number of ways to cross to the other side with a two-person boat if the crossings follow the pattern 2 sent, 1 returns, 2 sent, 1 returns, ..., 2 sent.

Caraceni, F., Yu (2022) found a natural bijection \longrightarrow Guan-Ru Yu's talk.

Patterns in Ranked Tree-Child Networks

Consider the following stochastic process:

Patterns in Ranked Tree-Child Networks

Consider the following stochastic process:
(a) Start with a branching event;

Patterns in Ranked Tree-Child Networks

Consider the following stochastic process:
(a) Start with a branching event;
(b) In the $\ell-1$-st step pick uniformly at random a tuple $\left(\ell_{1}, \ell_{2}\right)$ of lineages;

Patterns in Ranked Tree-Child Networks

Consider the following stochastic process:
(a) Start with a branching event;
(b) In the ℓ - 1 -st step pick uniformly at random a tuple $\left(\ell_{1}, \ell_{2}\right)$ of lineages;
(c) If $\ell_{1}=\ell_{2}$ attach a branching event to lineage ℓ_{1};

Patterns in Ranked Tree-Child Networks

Consider the following stochastic process:
(a) Start with a branching event;
(b) In the $\ell-1$-st step pick uniformly at random a tuple $\left(\ell_{1}, \ell_{2}\right)$ of lineages;
(c) If $\ell_{1}=\ell_{2}$ attach a branching event to lineage ℓ_{1};
(d) If $\ell_{1} \neq \ell_{2}$ attach a reticulation event to ℓ_{1}, ℓ_{2};

Patterns in Ranked Tree-Child Networks

Consider the following stochastic process:
(a) Start with a branching event;
(b) In the $\ell-1$-st step pick uniformly at random a tuple $\left(\ell_{1}, \ell_{2}\right)$ of lineages;
(c) If $\ell_{1}=\ell_{2}$ attach a branching event to lineage ℓ_{1};
(d) If $\ell_{1} \neq \ell_{2}$ attach a reticulation event to ℓ_{1}, ℓ_{2};
(e) Stop once n lineages are obtained.

Patterns in Ranked Tree-Child Networks

Consider the following stochastic process:
(a) Start with a branching event;
(b) In the $\ell-1$-st step pick uniformly at random a tuple $\left(\ell_{1}, \ell_{2}\right)$ of lineages;
(c) If $\ell_{1}=\ell_{2}$ attach a branching event to lineage ℓ_{1};
(d) If $\ell_{1} \neq \ell_{2}$ attach a reticulation event to ℓ_{1}, ℓ_{2};
(e) Stop once n lineages are obtained.
$X_{n} \ldots$ \# of occurrences of a pattern in the resulting tree.

Lemma

X_{n} has the same distribution as the number of occurrences of the pattern in a random ranked tc-network with n leaves.

Cherries and Tridents

$C_{n} \ldots$ \# of cherries of a random ranked tc-network of size n; $T_{n} \ldots$ \# of tridents of a random ranked tc-network of size n.

Cherries and Tridents

$C_{n} \ldots$ \# of cherries of a random ranked tc-network of size n; $T_{n} \ldots$ \# of tridents of a random ranked tc-network of size n.

Theorem (Bienvenu, Lambert, Steel; 2022)

- We have, $C_{n} \xrightarrow{d}$ Poisson(1/4).
- We have, $T_{n} / n \xrightarrow{\mathbb{P}} 1 / 7$.

Cherries and Tridents

$C_{n} \ldots$ \# of cherries of a random ranked tc-network of size n;
$T_{n} \ldots$ \# of tridents of a random ranked tc-network of size n.

Theorem (Bienvenu, Lambert, Steel; 2022)

- We have, $C_{n} \xrightarrow{d}$ Poisson(1/4).
- We have, $T_{n} / n \xrightarrow{\mathbb{P}} 1 / 7$.

We have $T_{2}=1$ and

$$
\left(T_{n+1} \mid T_{n}=j\right)= \begin{cases}j-1, & \text { with probability } 3 j(3 j-2) / n^{2} ; \\ j+1, & \text { with probability }(n-3 j)(n-3 j-1) / n^{2} \\ j, & \text { otherwise }\end{cases}
$$

CLT for Tridents (i)

Let $\mu_{n}:=\mathbb{E}\left(T_{n}\right)$.

CLT for Tridents (i)

Let $\mu_{n}:=\mathbb{E}\left(T_{n}\right)$. Then,

$$
\mu_{n+1}=\left(1-\frac{3}{n}\right) \mu_{n}+1-\frac{1}{n} .
$$

This recurrence can be (easily) solved.

CLT for Tridents (i)

Let $\mu_{n}:=\mathbb{E}\left(T_{n}\right)$. Then,

$$
\mu_{n+1}=\left(1-\frac{3}{n}\right) \mu_{n}+1-\frac{1}{n} .
$$

This recurrence can be (easily) solved.

Proposition

We have,

$$
\mathbb{E}\left(T_{n}\right)=\frac{\left(15 n^{3}-85 n^{2}+144 n-71\right) n}{105(n-1)(n-2)(n-3)}
$$

CLT for Tridents (i)

Let $\mu_{n}:=\mathbb{E}\left(T_{n}\right)$. Then,

$$
\mu_{n+1}=\left(1-\frac{3}{n}\right) \mu_{n}+1-\frac{1}{n} .
$$

This recurrence can be (easily) solved.

Proposition

We have,

$$
\mathbb{E}\left(T_{n}\right)=\frac{\left(15 n^{3}-85 n^{2}+144 n-71\right) n}{105(n-1)(n-2)(n-3)}
$$

Set

$$
\phi_{n, m}:=\mathbb{E}\left(T_{n}-\mu_{n}\right)^{m},
$$

i.e., $\phi_{n, m}$ is the m-th central moment of T_{n}.

CLT for Tridents (ii)

The m-th central moment satisfies:

$$
\phi_{n+1}=\left(1-\frac{\kappa}{n}\right)^{2} \phi_{n}+\psi_{n}
$$

with $\kappa=3 m$ and ψ_{n} depends on k-th central moments with $k<m$.

CLT for Tridents (ii)

The m-th central moment satisfies:

$$
\phi_{n+1}=\left(1-\frac{\kappa}{n}\right)^{2} \phi_{n}+\psi_{n}
$$

with $\kappa=3 m$ and ψ_{n} depends on k-th central moments with $k<m$.

Lemma

If $\psi_{n} \sim c n^{\alpha}$ with $\alpha>-2 \kappa-1$, then $\phi_{n} \sim c n^{\alpha+1} /(2 \kappa+\alpha+1)$.

CLT for Tridents (ii)

The m-th central moment satisfies:

$$
\phi_{n+1}=\left(1-\frac{\kappa}{n}\right)^{2} \phi_{n}+\psi_{n}
$$

with $\kappa=3 m$ and ψ_{n} depends on k-th central moments with $k<m$.
Lemma
If $\psi_{n} \sim c n^{\alpha}$ with $\alpha>-2 \kappa-1$, then $\phi_{n} \sim c n^{\alpha+1} /(2 \kappa+\alpha+1)$.

Proposition

For $m \geq 2$,

$$
\mathbb{E}\left(T_{n}-\mu_{n}\right)^{m} \sim \mathbb{E}\left(N(0,1)^{m}\right)\left(\frac{24}{637}\right)^{m / 2} n^{m / 2}
$$

CLT for Tridents (iii)

Theorem

Assume that $\mathbb{E}\left(X_{n}^{k}\right) \longrightarrow m_{k}$ for all $k \geq 1$.
Then, there exists a distribution X with $\mathbb{E}\left(X^{k}\right)=m_{k}$.
Moreover, if X is uniquely characterised by its sequence of moments, then

$$
X_{n} \xrightarrow{d} X .
$$

CLT for Tridents (iii)

Theorem

Assume that $\mathbb{E}\left(X_{n}^{k}\right) \longrightarrow m_{k}$ for all $k \geq 1$.
Then, there exists a distribution X with $\mathbb{E}\left(X^{k}\right)=m_{k}$.
Moreover, if X is uniquely characterised by its sequence of moments, then

$$
X_{n} \xrightarrow{d} X .
$$

Theorem (F., Liu, Yu; 2023)
We have,

$$
\frac{T_{n}-n / 7}{\sqrt{24 n / 637}} \xrightarrow{d} N(0,1) .
$$

Patterns of Height 2

Limit Laws for Patterns of Height 2

Theorem (F., Liu, Yu; 2023)
(a) The patterns in (a) have a degenerate limit law. More precisely,

$$
X_{n} \xrightarrow{L_{1}} 0 .
$$

(b) For the patterns in (b), we have

$$
X_{n} \xrightarrow{d} \operatorname{Poisson}(\lambda),
$$

where $\lambda=1 / 8$ or $1 / 28$ or $1 / 56$ or $1 / 14$ or $1 / 28$.
(c) For the patterns in (c), we have

$$
\frac{X_{n}-\mu n}{\sigma \sqrt{n}} \xrightarrow{d} N(0,1) .
$$

Pattern (b-iv)

type A
(a)

type B
(b)

type C
(c)

Pattern (b-iv)

	type A	type B	probability
A	-1	0	$4 a / n^{2}$
B	0	-1	$3 b / n^{2}$
C	0	0	c / n^{2}

Pattern (b-iv)

type A
(a)

type B
type C
(c)

	type A	type B	probability
A	-1	0	$4 a / n^{2}$
B	0	-1	$3 b / n^{2}$
C	0	0	c / n^{2}

	type A	type B	probability
A	-1	+1	$8 a / n^{2}$
	0	0	$4 a / n^{2}$
$A \& A$	-2	+1	$9 a(a-1) / n^{2}$
	-2	+2	$6 a(a-1) / n^{2}$
	-2	+3	$a(a-1) / n^{2}$
B	0	0	$2 b / n^{2}$
	+1	-1	$4 b / n^{2}$
$B \& B$	0	-1	$9 b(b-1) / n^{2}$
$C \& C$	0	+1	$c(c-1) / n^{2}$
$A \& B$	-1	0	$18 a b / n^{2}$
	-1	+1	$6 a b / n^{2}$
$A \& C$	-1	+1	$6 a c / n^{2}$
	-1	+2	$2 a c / n^{2}$
$B \& C$	0	0	$6 b c / n^{2}$

Pattern (b-iv)

type A
(a)

type B

type C
(c)

	type A	type B	probability
A	-1	0	$4 a / n^{2}$
B	0	-1	$3 b / n^{2}$
C	0	0	c / n^{2}

	type A	type B	probability
A	-1	+1	$8 a / n^{2}$
	0	0	$4 a / n^{2}$
$A \& A$	-2	+1	$9 a(a-1) / n^{2}$
	-2	+2	$6 a(a-1) / n^{2}$
	-2	+3	$a(a-1) / n^{2}$
B	0	0	$2 b / n^{2}$
	+1	-1	$4 b / n^{2}$
$B \& B$	0	-1	$9 b(b-1) / n^{2}$
$C \& C$	0	+1	$c(c-1) / n^{2}$
$A \& B$	-1	0	$18 a b / n^{2}$
	-1	+1	$6 a b / n^{2}$
$A \& C$	-1	+1	$6 a c / n^{2}$
	-1	+2	$2 a c / n^{2}$
$B \& C$	0	0	$6 b c / n^{2}$

Proposition

We have,

$$
\mathbb{E}\left(X_{n}^{r} T_{n}^{s}\right) \sim \frac{n^{s}}{14^{r} 7^{s}} .
$$

Pattern (c-i)

(a)

type A
type B
(b)

Pattern (c-i)

(a)

type A

type B

type $C \quad$ type D
(b)

We have,

$$
\mathbb{E}\left(X_{n}\right)=\frac{\left(1080 n^{5}-16668 n^{4}+96992 n^{3}-261735 n^{2}+319471 n-135654\right) n}{20790(n-1)(n-2)(n-3)(n-4)(n-5)}
$$

and
$\mathbb{E}\left(Y_{n}\right)=\frac{2\left(4290 n^{7}-125730 n^{6}+1509970 n^{5}-9550275 n^{4}+33968326 n^{3}-66905671 n^{2}+66128140 n-24510098\right) n}{1576575(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)}$
where Y_{n} is the number of occurrences of (a).

Limit Law of Pattern (c-i)

Proposition

We have,
$\mathbb{E}\left(\left(Y_{n}-\mathbb{E}\left(T_{n}\right)\right)^{r}\left(X_{n}-\mathbb{E}\left(X_{n}\right)\right)^{s}\left(T_{n}-\mathbb{E}\left(T_{n}\right)\right)^{t}\right) \sim \mathbb{E}\left(N_{1}^{r} N_{2}^{s} N_{3}^{t}\right) n^{(r+s+t) / 2}$.
where $\left(N_{1}, N_{2}, N_{3}\right)$ has distribution $N(\mathbf{0}, \Sigma)$ with

$$
\Sigma=\left[\begin{array}{ccc}
\frac{1002796}{203664825} & \frac{433528}{62537475} & \frac{-32}{13377} \\
\frac{433528}{62537475} & \frac{4575916}{137582445} & -\frac{608}{119119} \\
\frac{-32}{13377} & -\frac{608}{119119} & \frac{24}{637}
\end{array}\right]
$$

Thus,

$$
\frac{1}{\sqrt{n}}\left(Y_{n}-\mathbb{E}\left(Y_{n}\right), X_{n}-\mathbb{E}\left(X_{n}\right), T_{n}-\mathbb{E}\left(T_{n}\right)\right) \xrightarrow{d} N(\mathbf{0}, \Sigma) .
$$

Conjecture for general Patterns

Let F be a general pattern.

Conjecture for general Patterns

Let F be a general pattern.
Denote by P resp. P_{1} and P_{2} the patterns obtained by removing the last event.

Conjecture for general Patterns

Let F be a general pattern.
Denote by P resp. P_{1} and P_{2} the patterns obtained by removing the last event.

Conjecture

(a) If P is a normal pattern, then F is a Poisson pattern; in all other cases, F is a degenerate pattern.
(b) If P_{1}, P_{2} are both normal patterns, then F is a normal pattern; if P_{1} is a normal pattern and P_{2} is a Poisson pattern or vice versa, then F is a Poisson pattern; in all other cases, F is a degenerate pattern.

Conjecture for general Patterns

Let F be a general pattern.
Denote by P resp. P_{1} and P_{2} the patterns obtained by removing the last event.

Conjecture

(a) If P is a normal pattern, then F is a Poisson pattern; in all other cases, F is a degenerate pattern.
(b) If P_{1}, P_{2} are both normal patterns, then F is a normal pattern; if P_{1} is a normal pattern and P_{2} is a Poisson pattern or vice versa, then F is a Poisson pattern; in all other cases, F is a degenerate pattern.

The proof would require a less computational-intensive approach.

Some Open Problems

Some Open Problems

- Proof of the conjecture?

Some Open Problems

- Proof of the conjecture?
- How to study patterns for other classes of phylogenetic networks, e.g., tc-networks?

Some Open Problems

- Proof of the conjecture?
- How to study patterns for other classes of phylogenetic networks, e.g., tc-networks?
- Ranking can also be introduced for other classes of phylogenetic networks, e.g., ranked galled trees.

Some Open Problems

- Proof of the conjecture?
- How to study patterns for other classes of phylogenetic networks, e.g., tc-networks?
- Ranking can also be introduced for other classes of phylogenetic networks, e.g., ranked galled trees.
They are counted by the recurrence

$$
u(n, k)=k u(n-1, k-1)+\left(\binom{n}{2}-\binom{2 k}{2}\right) u(n-1, k)+3\binom{n-2 k}{3} u(n-1, k+1),
$$

where $u(n, 0)$ is the number of ranked galled trees with n leaves.
Asymptotics of $u(n, 0)$?

Some Open Problems

- Proof of the conjecture?
- How to study patterns for other classes of phylogenetic networks, e.g., tc-networks?
- Ranking can also be introduced for other classes of phylogenetic networks, e.g., ranked galled trees.
They are counted by the recurrence

$$
u(n, k)=k u(n-1, k-1)+\left(\binom{n}{2}-\binom{2 k}{2}\right) u(n-1, k)+3\binom{n-2 k}{3} u(n-1, k+1),
$$

where $u(n, 0)$ is the number of ranked galled trees with n leaves.
Asymptotics of $u(n, 0)$?

- How about stochastic results for random ranked galled trees?

References

- F. Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic properties of ranked tree-child networks, Random Struc. Algor., 60:4, 653-689.
- H. Chang and M. Fuchs (2010). Limit theorems for patterns in phylogenetic trees, J. Math. Biol., 60:4, 481-512.
- Y.-S. Chang, M. Fuchs, H. Liu, M. Wallner, G.-R. Yu. Enumerative and distributional results for d-combining tree-child networks, 48 pages, submitted.
- M. Fuchs, G.-R. Yu, L. Zhang (2021). On the asymptotic growth of the number of tree-child networks, European J. Comb., 93, 103278.
- M. Fuchs, H. Liu, T.-C. Yu (2023). Limit theorems for patterns in ranked tree-child networks, Random Struc. Algor., in press

