LIMIT LAWS FOR PATTERNS IN RANKED TREE-CHILD NETWORKS (joint with H. Liu and T.-C. Yu)

#### Michael Fuchs

Department of Mathematical Sciences National Chengchi University



NATIONAL CHENCCHI, UNIVERSITY

#### September 6th, 2022

Ranked TC-Networks

- ∢ 🗗 ▶

 $X \ldots$  a finite set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $X \ldots$  a finite set.

Theorem

A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled by X.

イロト 不得 トイラト イラト 一日

 $X \ldots$  a finite set.

Theorem

A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled by X.

 $T_n \ldots \#$  of phylogenetic trees with n leaves.

イロト 不得 トイヨト イヨト 二日

 $X \ldots$  a finite set.

Theorem

A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled by X.

 $T_n \ldots \#$  of phylogenetic trees with n leaves.

Theorem (Schröder; 1870)

We have,

$$\mathbf{T}_n = (2n-3)!!.$$

Thus, as  $n \to \infty$ ,

$$\mathbf{T}_n \sim \frac{1}{\sqrt{2}} \left(\frac{2}{e}\right)^n n^{n-1}.$$

Michael Fuchs (NCCU)

э

2/24

(日)

P ... a rooted, non-plane, binary tree with k (unlabeled) leaves.

イロト 不得 トイヨト イヨト 二日

P ... a rooted, non-plane, binary tree with k (unlabeled) leaves.

**Question:** how often does P appear in a random phylogenetic tree as fringe subtree?

イロト 不得 トイヨト イヨト 二日

P ... a rooted, non-plane, binary tree with k (unlabeled) leaves.

**Question:** how often does P appear in a random phylogenetic tree as fringe subtree?

#### **Random Models:**

- Uniform model: every phylogenetic tree of size *n* is equally likely;
- Yule-Harding model: defined via a tree evolution process.

P ... a rooted, non-plane, binary tree with k (unlabeled) leaves.

**Question:** how often does P appear in a random phylogenetic tree as fringe subtree?

#### **Random Models:**

- Uniform model: every phylogenetic tree of size *n* is equally likely;
- Yule-Harding model: defined via a tree evolution process.

#### Theorem

Expected value and variance of the number  $X_n$  of occurrences of P are both linear. Moreover,

$$\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\operatorname{Var}(X_n)}} \stackrel{d}{\longrightarrow} N(0, 1).$$

A D N A B N A B N A B N

 $X_{n,k} \ldots \#$  of occurrences of a pattern of size k in a random phylogenetic tree of size n.

イロト 不得 トイラト イラト 一日

 $X_{n,k} \ldots \#$  of occurrences of a pattern of size k in a random phylogenetic tree of size n.



イロト 不得下 イヨト イヨト 二日

 $X_{n,k} \ldots \#$  of occurrences of a pattern of size k in a random phylogenetic tree of size n.



イロト 不得下 イヨト イヨト 二日

 $X_{n,k} \ldots \#$  of occurrences of a pattern of size k in a random phylogenetic tree of size n.



H. Chang and M. Fuchs (2010). Limit theorems for patterns in phylogenetic trees, J. Math. Biol., 60:4, 481–512.

Michael Fuchs (NCCU)

Ranked TC-Networks

3 N 3

 $X \ldots$  a finite set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $X \ldots$  a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

 $X \ldots$  a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:

(a) root: in-degree 0 and out-degree 1;

3

A B M A B M

 $X \ldots$  a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:

(a) root: in-degree 0 and out-degree 1;

(b) *leaves:* in-degree 1 and out-degree 0; bijectively labeled by X;

3

글 제 제 글 제

 $X \ldots$  a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:

(a) root: in-degree 0 and out-degree 1;

- (b) *leaves:* in-degree 1 and out-degree 0; bijectively labeled by X;
- (c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

A B M A B M

 $X \ldots$  a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:

(a) root: in-degree 0 and out-degree 1;

- (b) *leaves:* in-degree 1 and out-degree 0; bijectively labeled by X;
- (c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes) or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.

They are used to model reticulate evolution which contains reticulation events caused by, e.g., lateral gene transfer or hybridization.

## **TC-Networks**

#### Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

э

3 × 4 3 ×

< 47 ▶

## **TC-Networks**

#### Definition

A phylogenetic network is called tree-child network if every non-leaf node has at least one child which is not a reticulation node.

#### Examples:



< 🗇 🕨

э

## **TC-Networks**

#### Definition

A phylogenetic network is called <u>tree-child network</u> if every non-leaf node has at least one child which is not a reticulation node.

#### **Examples:**



Figure: (a) is not a tc-network whereas (b) is a tc-network.

Michael Fuchs (NCCU)

Ranked TC-Networks

 $\mathrm{TC}_n \ \ldots \ \#$  of tc-networks with n leaves.

イロト 不得下 イヨト イヨト 二日

 $TC_n \ldots \#$  of tc-networks with n leaves.

Theorem (F., Yu, Zhang; 2021)

We have,

$$TC_n = \Theta\left(n^{-2/3}e^{a_1(3n)^{1/3}} \left(\frac{12}{e^2}\right)^n n^{2n}\right),\,$$

where  $a_1$  is the largest root of the Airy function of first order.

イロト 不得 トイヨト イヨト 二日

 $\mathrm{TC}_n \ \ldots \ \#$  of tc-networks with n leaves.

Theorem (F., Yu, Zhang; 2021)

We have,

$$TC_n = \Theta\left(n^{-2/3}e^{a_1(3n)^{1/3}} \left(\frac{12}{e^2}\right)^n n^{2n}\right),\,$$

where  $a_1$  is the largest root of the Airy function of first order.

Theorem (McDiarmid, Semple, Welsh; 2015)

The number of cherries is o(n) for almost all tc-networks.

イロト 不得 トイヨト イヨト 二日

 $\mathrm{TC}_n \ \ldots \ \#$  of tc-networks with n leaves.

Theorem (F., Yu, Zhang; 2021)

We have,

$$TC_n = \Theta\left(n^{-2/3}e^{a_1(3n)^{1/3}} \left(\frac{12}{e^2}\right)^n n^{2n}\right),\,$$

where  $a_1$  is the largest root of the Airy function of first order.

Theorem (McDiarmid, Semple, Welsh; 2015)

The number of cherries is o(n) for almost all tc-networks.

Theorem (Chang, F., Liu, Wallner, Yu; 2023+)

We have,

$$\mathbb{E}(\# \text{ of cherries}) = \mathcal{O}(1).$$

Michael Fuchs (NCCU)

イロト イポト イヨト イヨト

## Ranked TC-Networks (i)

*F.* Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic properties of ranked tree-child networks, Random Struc. Algor., 60:4, 653–689.

э

3 × 4 3 ×

# Ranked TC-Networks (i)

F. Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic properties of ranked tree-child networks, Random Struc. Algor., 60:4, 653–689.

Define two types of events:



# Ranked TC-Networks (i)

*F. Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic properties of ranked tree-child networks, Random Struc. Algor., 60:4, 653–689.* 

Define two types of events:



#### Definition

A ranked tc-network is a tc-network which is drawn starting with a branching event and consecutively adding either a branching event or a reticulation event until all events are used.

Michael Fuchs (NCCU)

Ranked TC-Networks

September 6th, 2022

# Ranked TC-Networks (ii)





(b)

Michael Fuchs (NCCU)

Ranked TC-Networks

September 6th, 2022

<ロト < 四ト < 三ト < 三ト

# Ranked TC-Networks (ii)



Question: which tc-networks are rankable?

э

# Ranked TC-Networks (ii)



Question: which tc-networks are rankable?



## Counting Ranked TC-Networks (i)

 $\operatorname{RTC}_{n,k} \ldots \#$  of ranked tc-networks with k reticulation nodes.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

#### Counting Ranked TC-Networks (i)

 $\operatorname{RTC}_{n,k} \ldots \#$  of ranked tc-networks with k reticulation nodes.

Theorem (Bienvenu, Lambert, Steel; 2022)

We have,

$$\operatorname{RTC}_{n,k} = \begin{bmatrix} n-1\\ n-1-k \end{bmatrix} \cdot \frac{n!(n-1)!}{2^{n-1}},$$

where  $\binom{n-1}{n-1-k}$  denotes the unsigned Stirling numbers of first kind and  $n!(n-1)!/2^{n-1}$  is the number of ranked trees.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

## Counting Ranked TC-Networks (i)

 $\operatorname{RTC}_{n,k} \ldots \#$  of ranked tc-networks with k reticulation nodes.

Theorem (Bienvenu, Lambert, Steel; 2022)

We have,

$$\operatorname{RTC}_{n,k} = \begin{bmatrix} n-1\\ n-1-k \end{bmatrix} \cdot \frac{n!(n-1)!}{2^{n-1}},$$

where  $\binom{n-1}{n-1-k}$  denotes the unsigned Stirling numbers of first kind and  $n!(n-1)!/2^{n-1}$  is the number of ranked trees.

# Corollary We have, $\frac{\# \text{ of reticulation nodes} - n + \log n}{\sqrt{\log n}} \xrightarrow{d} N(0, 1).$ Michael Fuchs (NCCU) Ranked TC-Networks September 6th, 2022 10/24

# Counting Ranked TC-Networks (ii)

 $\operatorname{RTC}_n \ldots \#$  of ranked tc-networks with n leaves.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
# Counting Ranked TC-Networks (ii)

 $\operatorname{RTC}_n \ldots \#$  of ranked tc-networks with n leaves.

Corollary

We have,

$$RTC_n = \frac{n!(n-1)!^2}{2^{n-1}}$$

- 20

イロト イポト イヨト イヨト

# Counting Ranked TC-Networks (ii)

 $\operatorname{RTC}_n \ldots \#$  of ranked tc-networks with n leaves.

Corollary

We have,

$$RTC_n = \frac{n!(n-1)!^2}{2^{n-1}}$$

This is A167484 in the OEIS (www.oeis.org):

Assume that n people are on one side of a river. Then, this sequences is the number of ways to cross to the other side with a two-person boat if the crossings follow the pattern 2 sent, 1 returns, 2 sent, 1 returns, ..., 2 sent.

# Counting Ranked TC-Networks (ii)

 $\operatorname{RTC}_n \ldots \#$  of ranked tc-networks with n leaves.

Corollary

We have,

$$RTC_n = \frac{n!(n-1)!^2}{2^{n-1}}$$

This is A167484 in the OEIS (www.oeis.org):

Assume that n people are on one side of a river. Then, this sequences is the number of ways to cross to the other side with a two-person boat if the crossings follow the pattern 2 sent, 1 returns, 2 sent, 1 returns, ..., 2 sent.

Caraceni, F., Yu (2022) found a natural bijection  $\longrightarrow$  Guan-Ru Yu's talk.

< □ > < 同 > < 三 > < 三 >

Consider the following stochastic process:

(日)

э

Consider the following stochastic process:

(a) Start with a branching event;

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Consider the following stochastic process:

- (a) Start with a branching event;
- (b) In the  $\ell 1$ -st step pick uniformly at random a tuple  $(\ell_1, \ell_2)$  of lineages;

3

- 4 回 ト 4 ヨ ト 4 ヨ ト

Consider the following stochastic process:

- (a) Start with a branching event;
- (b) In the  $\ell 1$ -st step pick uniformly at random a tuple  $(\ell_1, \ell_2)$  of lineages;
- (c) If  $\ell_1 = \ell_2$  attach a branching event to lineage  $\ell_1$ ;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the following stochastic process:

- (a) Start with a branching event;
- (b) In the  $\ell 1$ -st step pick uniformly at random a tuple  $(\ell_1, \ell_2)$  of lineages;
- (c) If  $\ell_1 = \ell_2$  attach a branching event to lineage  $\ell_1$ ;
- (d) If  $\ell_1 \neq \ell_2$  attach a reticulation event to  $\ell_1, \ell_2$ ;

Consider the following stochastic process:

- (a) Start with a branching event;
- (b) In the  $\ell 1$ -st step pick uniformly at random a tuple  $(\ell_1, \ell_2)$  of lineages;
- (c) If  $\ell_1 = \ell_2$  attach a branching event to lineage  $\ell_1$ ;
- (d) If  $\ell_1 \neq \ell_2$  attach a reticulation event to  $\ell_1, \ell_2$ ;
- (e) Stop once n lineages are obtained.

化原水 化原水合 医

Consider the following stochastic process:

- (a) Start with a branching event;
- (b) In the  $\ell 1$ -st step pick uniformly at random a tuple  $(\ell_1, \ell_2)$  of lineages;
- (c) If  $\ell_1 = \ell_2$  attach a branching event to lineage  $\ell_1$ ;
- (d) If  $\ell_1 \neq \ell_2$  attach a reticulation event to  $\ell_1, \ell_2$ ;
- (e) Stop once n lineages are obtained.

 $X_n \ldots \#$  of occurrences of a pattern in the resulting tree.

#### Lemma

 $X_n$  has the same distribution as the number of occurrences of the pattern in a random ranked tc-network with n leaves.

イロト 不得 トイヨト イヨト 二日

## Cherries and Tridents

 $C_n \ldots \#$  of cherries of a random ranked tc-network of size n;

 $T_n \ldots \#$  of tridents of a random ranked tc-network of size n.

イロト 不得下 イヨト イヨト 二日

### Cherries and Tridents

 $C_n \ldots \#$  of cherries of a random ranked tc-network of size n;

 $T_n \ldots \#$  of tridents of a random ranked tc-network of size n.

Theorem (Bienvenu, Lambert, Steel; 2022)

- We have,  $C_n \xrightarrow{d} \text{Poisson}(1/4)$ .
- We have,  $T_n/n \xrightarrow{\mathbb{P}} 1/7$ .

イロト 不得 トイヨト イヨト 二日

### Cherries and Tridents

 $C_n \ \ldots \ \#$  of cherries of a random ranked tc-network of size n;

 $T_n \ldots \#$  of tridents of a random ranked tc-network of size n.

Theorem (Bienvenu, Lambert, Steel; 2022)

• We have, 
$$C_n \xrightarrow{d} \text{Poisson}(1/4)$$
.

• We have, 
$$T_n/n \xrightarrow{\mathbb{P}} 1/7$$
.

We have  $T_2 = 1$  and

$$(T_{n+1}|T_n = j) = \begin{cases} j-1, & \text{with probability } 3j(3j-2)/n^2; \\ j+1, & \text{with probability } (n-3j)(n-3j-1)/n^2; \\ j, & \text{otherwise.} \end{cases}$$

Let  $\mu_n := \mathbb{E}(T_n)$ .

イロト イヨト イヨト イヨト 二日

Let  $\mu_n := \mathbb{E}(T_n)$ . Then,

$$\mu_{n+1} = \left(1 - \frac{3}{n}\right)\mu_n + 1 - \frac{1}{n}.$$

This recurrence can be (easily) solved.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let  $\mu_n := \mathbb{E}(T_n)$ . Then,

$$\mu_{n+1} = \left(1 - \frac{3}{n}\right)\mu_n + 1 - \frac{1}{n}.$$

This recurrence can be (easily) solved.

### Proposition

We have,

$$\mathbb{E}(T_n) = \frac{(15n^3 - 85n^2 + 144n - 71)n}{105(n-1)(n-2)(n-3)}$$

イロト 不得 トイヨト イヨト 二日

Let  $\mu_n := \mathbb{E}(T_n)$ . Then,

$$\mu_{n+1} = \left(1 - \frac{3}{n}\right)\mu_n + 1 - \frac{1}{n}.$$

This recurrence can be (easily) solved.

### Proposition

We have,

$$\mathbb{E}(T_n) = \frac{(15n^3 - 85n^2 + 144n - 71)n}{105(n-1)(n-2)(n-3)}$$

Set

$$\phi_{n,m} := \mathbb{E}(T_n - \mu_n)^m,$$

i.e.,  $\phi_{n,m}$  is the *m*-th central moment of  $T_n$ .

Michael Fuchs (NCCU)

イロト 不得 トイヨト イヨト 二日

The m-th central moment satisfies:

$$\phi_{n+1} = \left(1 - \frac{\kappa}{n}\right)^2 \phi_n + \psi_n,$$

with  $\kappa = 3m$  and  $\psi_n$  depends on k-th central moments with k < m.

3

< □ > < 同 > < 回 > < 回 > < 回 >

The m-th central moment satisfies:

$$\phi_{n+1} = \left(1 - \frac{\kappa}{n}\right)^2 \phi_n + \psi_n,$$

with  $\kappa = 3m$  and  $\psi_n$  depends on k-th central moments with k < m.

#### Lemma

If 
$$\psi_n \sim cn^{\alpha}$$
 with  $\alpha > -2\kappa - 1$ , then  $\phi_n \sim cn^{\alpha+1}/(2\kappa + \alpha + 1)$ .

3

イロト イポト イヨト イヨト

The m-th central moment satisfies:

$$\phi_{n+1} = \left(1 - \frac{\kappa}{n}\right)^2 \phi_n + \psi_n,$$

with  $\kappa = 3m$  and  $\psi_n$  depends on k-th central moments with k < m.

#### Lemma

If 
$$\psi_n \sim cn^{\alpha}$$
 with  $\alpha > -2\kappa - 1$ , then  $\phi_n \sim cn^{\alpha+1}/(2\kappa + \alpha + 1)$ .

### Proposition

For  $m \geq 2$ ,

$$\mathbb{E}(T_n - \mu_n)^m \sim \mathbb{E}(N(0, 1)^m) \left(\frac{24}{637}\right)^{m/2} n^{m/2}.$$

Michael Fuchs (NCCU)

3

イロト イボト イヨト イヨト

#### Theorem

Assume that  $\mathbb{E}(X_n^k) \longrightarrow m_k$  for all  $k \ge 1$ .

Then, there exists a distribution X with  $\mathbb{E}(X^k) = m_k$ .

Moreover, if X is uniquely characterised by its sequence of moments, then

$$X_n \xrightarrow{d} X.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Theorem

Assume that  $\mathbb{E}(X_n^k) \longrightarrow m_k$  for all  $k \ge 1$ .

Then, there exists a distribution X with  $\mathbb{E}(X^k) = m_k$ .

Moreover, if X is uniquely characterised by its sequence of moments, then

$$X_n \xrightarrow{d} X.$$

Theorem (F., Liu, Yu; 2023)

We have,

$$\frac{T_n - n/7}{\sqrt{24n/637}} \xrightarrow{d} N(0, 1).$$

イロト 不得 トイヨト イヨト 二日

## Patterns of Height 2



<ロト < 四ト < 三ト < 三ト

3

### Limit Laws for Patterns of Height 2

Theorem (F., Liu, Yu; 2023)

(a) The patterns in (a) have a degenerate limit law. More precisely,

$$X_n \xrightarrow{L_1} 0.$$

(b) For the patterns in (b), we have

$$X_n \xrightarrow{d} \text{Poisson}(\lambda),$$

where  $\lambda = 1/8$  or 1/28 or 1/56 or 1/14 or 1/28.

(c) For the patterns in (c), we have

$$\frac{X_n - \mu n}{\sigma \sqrt{n}} \stackrel{d}{\longrightarrow} N(0, 1).$$

3

イロト イボト イヨト イヨト



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣



|   | type $A$ | type $B$ | probability |
|---|----------|----------|-------------|
| Α | -1       | 0        | $4a/n^2$    |
| B | 0        | -1       | $3b/n^2$    |
| C | 0        | 0        | $c/n^2$     |

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣



|   | type $A$ | type $B$ | probability |
|---|----------|----------|-------------|
| A | -1       | 0        | $4a/n^2$    |
| B | 0        | -1       | $3b/n^2$    |
| C | 0        | 0        | $c/n^2$     |

|       | type $A$ | type $B$ | probability   |
|-------|----------|----------|---------------|
| Δ     | -1       | +1       | $8a/n^2$      |
| А     | 0        | 0        | $4a/n^2$      |
|       | -2       | +1       | $9a(a-1)/n^2$ |
| A & A | -2       | +2       | $6a(a-1)/n^2$ |
|       | -2       | +3       | $a(a-1)/n^2$  |
| B     | 0        | 0        | $2b/n^{2}$    |
| Б     | +1       | -1       | $4b/n^2$      |
| B & B | 0        | -1       | $9b(b-1)/n^2$ |
| C & C | 0        | +1       | $c(c-1)/n^2$  |
| A & B | -1       | 0        | $18ab/n^{2}$  |
| A&D   | -1       | +1       | $6ab/n^2$     |
| A & C | -1       | +1       | $6ac/n^2$     |
| A&C   | -1       | +2       | $2ac/n^2$     |
| B & C | 0        | 0        | $6bc/n^2$     |

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣



type B

0

-1

0

probability

 $4a/n^2$ 

 $3b/n^2$ 

 $c/n^2$ 

| А      | 0  | 0       | $4a/n^{2}$    |
|--------|----|---------|---------------|
|        | -2 | +1      | $9a(a-1)/n^2$ |
| A & A  | -2 | +2      | $6a(a-1)/n^2$ |
|        | -2 | +3      | $a(a-1)/n^2$  |
| В      | 0  | 0       | $2b/n^2$      |
| Б      | +1 | -1      | $4b/n^{2}$    |
| B & B  | 0  | -1      | $9b(b-1)/n^2$ |
| C & C  | 0  | $^{+1}$ | $c(c-1)/n^2$  |
| 1 8. D | -1 | 0       | $18ab/n^{2}$  |
| A & D  | -1 | +1      | $6ab/n^2$     |
| 18.0   | -1 | $^{+1}$ | $6ac/n^2$     |
| Aac    | -1 | +2      | $2ac/n^2$     |
| B & C  | 0  | 0       | $6bc/n^2$     |

type B

+1

probability

 $8a/n^2$ 

type A

-1

Λ

### Proposition

A

В

C

We have,

$$\mathbb{E}(X_n^{\underline{r}}T_n^s) \sim \frac{n^s}{14^r 7^s}.$$

Michael Fuchs (NCCU)

type A

-1

0

0

2

19 / 24

< □ > < □ > < □ > < □ > < □ >

# Pattern (c-i)



(a)

(b)

3

イロト イヨト イヨト イヨト

# Pattern (c-i)



We have,

$$\mathbb{E}(X_n) = \frac{(1080n^5 - 16668n^4 + 96992n^3 - 261735n^2 + 319471n - 135654)n}{20790(n-1)(n-2)(n-3)(n-4)(n-5)}$$

and

$$\mathbb{E}(Y_n) = \frac{2(4290n^7 - 125730n^6 + 1509970n^5 - 9550275n^4 + 33968326n^3 - 66905671n^2 + 66128140n - 24510098)n^2}{1576575(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)}$$

where  $Y_n$  is the number of occurrences of (a).

2

イロト イポト イヨト イヨト

# Limit Law of Pattern (c-i)

#### Proposition

### We have,

 $\mathbb{E}((Y_n - \mathbb{E}(T_n))^r (X_n - \mathbb{E}(X_n))^s (T_n - \mathbb{E}(T_n))^t) \sim \mathbb{E}(N_1^r N_2^s N_3^t) n^{(r+s+t)/2}.$ 

where  $(N_1, N_2, N_3)$  has distribution  $N(\mathbf{0}, \Sigma)$  with

$$\Sigma = \begin{bmatrix} \frac{1002796}{203664825} & \frac{433528}{62537475} & \frac{-32}{13377} \\ \frac{433528}{62537475} & \frac{4575916}{137582445} & -\frac{608}{119119} \\ \frac{-32}{13377} & -\frac{608}{119119} & \frac{24}{637} \end{bmatrix}$$

Thus,

$$\frac{1}{\sqrt{n}} \left( Y_n - \mathbb{E}(Y_n), X_n - \mathbb{E}(X_n), T_n - \mathbb{E}(T_n) \right) \stackrel{d}{\longrightarrow} N(\mathbf{0}, \Sigma).$$

ヘロマ ヘ動マ ヘヨマ ヘヨマ

.

3

Let F be a general pattern.

3

イロト イポト イヨト イヨト

Let F be a general pattern.

Denote by P resp.  $P_1$  and  $P_2$  the patterns obtained by removing the last event.

3

(日)

Let F be a general pattern.

Denote by P resp.  $P_1$  and  $P_2$  the patterns obtained by removing the last event.

#### Conjecture

- (a) If P is a normal pattern, then F is a Poisson pattern; in all other cases, F is a degenerate pattern.
- (b) If  $P_1, P_2$  are both normal patterns, then F is a normal pattern; if  $P_1$  is a normal pattern and  $P_2$  is a Poisson pattern or vice versa, then F is a Poisson pattern; in all other cases, F is a degenerate pattern.

22 / 24

イロト 不得 トイヨト イヨト 二日

Let F be a general pattern.

Denote by P resp.  $P_1$  and  $P_2$  the patterns obtained by removing the last event.

### Conjecture

- (a) If P is a normal pattern, then F is a Poisson pattern; in all other cases, F is a degenerate pattern.
- (b) If  $P_1, P_2$  are both normal patterns, then F is a normal pattern; if  $P_1$  is a normal pattern and  $P_2$  is a Poisson pattern or vice versa, then F is a Poisson pattern; in all other cases, F is a degenerate pattern.

The proof would require a less computational-intensive approach.

イロト 不得 トイヨト イヨト 二日

## Some Open Problems

Michael Fuchs (NCCU)

Ranked TC-Networks

September 6th, 2022 23 / 24

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
• Proof of the conjecture?

3

イロト 不得 トイヨト イヨト

- Proof of the conjecture?
- How to study patterns for other classes of phylogenetic networks, e.g., tc-networks?

Image: A matrix

3

- Proof of the conjecture?
- How to study patterns for other classes of phylogenetic networks, e.g., tc-networks?
- Ranking can also be introduced for other classes of phylogenetic networks, e.g., ranked galled trees.

- Proof of the conjecture?
- How to study patterns for other classes of phylogenetic networks, e.g., tc-networks?
- Ranking can also be introduced for other classes of phylogenetic networks, e.g., ranked galled trees.

They are counted by the recurrence

$$u(n,k) = ku(n-1,k-1) + \binom{n}{2} - \binom{2k}{2}u(n-1,k) + 3\binom{n-2k}{3}u(n-1,k+1),$$

where u(n,0) is the number of ranked galled trees with n leaves. Asymptotics of u(n,0)?

- Proof of the conjecture?
- How to study patterns for other classes of phylogenetic networks, e.g., tc-networks?
- Ranking can also be introduced for other classes of phylogenetic networks, e.g., ranked galled trees.

They are counted by the recurrence

$$u(n,k) = ku(n-1,k-1) + \binom{\binom{n}{2} - \binom{2k}{2}}{u(n-1,k) + 3\binom{n-2k}{3}u(n-1,k+1),$$

where u(n,0) is the number of ranked galled trees with n leaves. Asymptotics of u(n,0)?

• How about stochastic results for random ranked galled trees?

#### References

- F. Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic properties of ranked tree-child networks, Random Struc. Algor., 60:4, 653–689.
- H. Chang and M. Fuchs (2010). Limit theorems for patterns in phylogenetic trees, J. Math. Biol., 60:4, 481–512.
- Y.-S. Chang, M. Fuchs, H. Liu, M. Wallner, G.-R. Yu. Enumerative and distributional results for *d*-combining tree-child networks, 48 pages, submitted.
- M. Fuchs, G.-R. Yu, L. Zhang (2021). On the asymptotic growth of the number of tree-child networks, European J. Comb., 93, 103278.
- M. Fuchs, H. Liu, T.-C. Yu (2023). Limit theorems for patterns in ranked tree-child networks, Random Struc. Algor., in press

- 20