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Analytic Combinatorics (i)

Combinatorialists use recurrence, generating functions, and
such transformations as the Vandermonde convolution; oth-
ers, to my horror, use contour integrals, differential equa-
tions, and other resources of mathematical analysis.

- John Riordan (1968).
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Analytic Combinatorics (ii)
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Outline of the Talk

1 Introduction

2 Patterns in Phylogenetic Trees

H. Chang and M. Fuchs (2010). Limit theorems for patterns in
phylogenetic trees, J. Math. Biol., 60:4, 481–512.

3 Shapley Value and Fair Proportion Index

M. Fuchs and E. Y. Jin (2015). Equality of Shapley value and fair
proportion index in phylogenetic trees, J. Math. Biol., in press.

4 Number of Groups formed by Social Animals

M. Drmota, M. Fuchs, Y.-W. Lee (2016+). Stochastic analysis of the
extra clustering model for animal grouping, in revision.
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Evolutionary Biology

Charles Darwin
(1809-1882)

First notebook on
Transmutation of Species

(1837)

Michael Fuchs (NCTU) Phylogenetic Trees (PTs) June 30th, 2015 5 / 45



Evolutionary Biology

Charles Darwin
(1809-1882)

First notebook on
Transmutation of Species

(1837)

Michael Fuchs (NCTU) Phylogenetic Trees (PTs) June 30th, 2015 5 / 45



Phylogenetic trees (=PTs)

Phylogenetic tree of size n: rooted, plane, unlabelled binary tree with n
external nodes (and consequently n− 1 internal nodes).
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Applications of PTs

Understanding genetic relatedness of species

Understanding the underlying evolutionary process

Predicting possible future outcomes

Testing appropriateness of random models

Making conservation decisions in genetics

Modeling the group formation process of social animals

Etc.
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Yule-Harding model or Kingman Coalescent

Example:

species

Random Model 1:

At every time point,

two yellow nodes

uniformly coalescent.

Same model as
random binary

search tree model!

ti
m

e
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Yule-Harding model or Increasing Binary Trees

Example:

Random Model 2:

At every time point,

a yellow node is

replaced by a cherry.

Random model 1

and random model 2

are the same.
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Binary Search Trees

Example: Input 1, 4, 2, 5, 3

1

4

5

2

3

Random Model 3:

All permutations of

the input are equally

equally.

Again the same as

random model 1

and random model 2.
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Patterns in PTs

k-pronged node (McKenzie and Steel 2000; Rosenberg 2006):

Node with an induced subtree of size k.

k-caterpillar (Rosenberg 2006):

Induced subtree of size k with an internal node which is descendent of
all other internal nodes.

Node with minimal clade size k ≥ 3 (Blum and François (2005)):

Node with induced subtree of size k and either right or left subtree is
an external node.
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Mean and variance of k-pronged nodes

Xn,k = # of k-pronged nodes in random PT of size n.

Rosenberg 2006: we have

µn,k := E(Xn,k) =
2n

k(k + 1)
, (n > k)

and

σ2n,k := Var(Xn,k) =



2(4k2 − 3k − 4)(k − 1)n

k(k + 1)2(2k − 1)(2k + 1)
, if n > 2k;

2(5k − 7)(k − 1)

(k + 1)2(2k − 1)
, if n = 2k;

2(k2 + k − 2n)n

k2(k + 1)2
, if 2k > n > k.

This result + central limit theorem also obtained by Devroye in 1991!
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“The phase change”

Question: What happens for k →∞ as n→∞?

Theorem (Feng, Mahmoud, Panholzer; 2008)

(i) (Normal range) Let k = o (
√
n). Then,

Xn,k − µn,k
σn,k

d−→ N (0, 1).

(ii) (Poisson range) Let k ∼ c
√
n. Then,

Xn,k
d−→ Po(2c−2).

(iii) (Degenerate range) Let k < n and
√
n = o(k). Then,

Xn,k
L1−→ 0.
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A General Framework

A pattern of size k is a set of induced subtrees of size k.

Xn,k = # of occurrence of a pattern of size k in random PT of size n.

We have,

Xn,k
d
= XIn,k +X∗n−In,k,

where Xk,k = Bernoulli(pk), XIn,k and X∗n−In,k are conditionally
independent given In, and In = Unif{1, . . . , n− 1}

Here,

pk shape parameter

1 # of k-pronged nodes
2/(k − 1) # of nodes with minimal clade size k

2k−2/(k − 1)! # of k caterpillars
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Mean Value and Variance

We have

µn,k =
2pkn

k(k + 1)
, (n > k),

and

σ2n,k =
2(4k3 + 4k2 − k − 1− (11k2 − 5)pk)pkn

k(k + 1)2(2k − 1)(2k + 1)

for n > 2k.

Note that

µn,k ∼ σ2n,k ∼
2pkn

k2

for n > 2k and k →∞.
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Poisson Approximation

Theorem (Chang and F.; 2010)

Let k < n and k →∞. Then,

dTV (Xn,k,Po(µn,k)) =

{
O (pk/k) , if µn,k ≥ 1;

O (pk/k · µn,k) , if µn,k < 1.

Recently re-proved by Holmgren and Janson with Stein’s method:

C. Holmgren and S. Janson (2015). Limit laws for functions of fringe trees
for binary search trees and recursive trees, Electronic J. Probability, 20:4,
1–51.
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Berry-Esseen bound and LLT

Theorem (Chang and F.; 2010)

For µn,k →∞,

sup
x∈R

∣∣∣∣∣P
(
Xn,k − µn,k

σn,k
< x

)
− Φ(x)

∣∣∣∣∣ = O
(

k
√
pkn

)
.

Theorem (Chang and F.; 2010)

For µn,k →∞,

P (Xn,k = bµn,k + xσ2n,kc) =
e−x

2/2

√
2πσn,k

(
1 +O

(
(1 + |x|3) k

√
pkn

))
,

uniformly in x = o((pkn)1/6/k1/3).
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Short Summary

We have proved:

Explicit expressions for mean and variance.

Local limit theorem + Berry-Esseen bound for the largest possible
range of k.

Poisson approximation + rate whenever k →∞.

So, for k � n the number of occurrences of the pattern can be
approximated by the normal distribution, whereas for the remaining range
a Poisson random variable should be used.

In particular, the phase change occurs much earlier than predicted by
Feng, Mahmoud, and Panholzer.
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Lloyd Shapley

Lloyd Shapley
(1923-)

Shapley value:

Measure of importance of each
player in a cooperative game

−→ recently used as prioritization
tool of taxa in phylogenetics
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Shapley Value and Modified Shapley Value

T . . . PT;

a . . . taxon (=leaf) of T .

Shapley value SVT (a):

SVT (a) =
1

n!

∑
S,a∈S

(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a})).

Modified Shapley value S̃VT (a):

S̃VT (a) =
1

n!

∑
|S|≥2,a∈S

(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a})).

PD(S) is the size of the ancestor of S.
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Fair Proportion Index

Fair proportion index FPT (a):

FPT (a) =
∑
e

1

De

with De the number of taxa below e.

Selected (somehow arbitrarily) by Zoological Society of London for EDGE
of Existence conservation program!

FPn = fair proportion index of random taxon in random PT of size n:

FPn|(In = j) =

{
1
j + FPj , with probability j/n;
1

n−j + FPn−j , with probability (n− j)/n,

where In = Unif{1, . . . , n− 1}.
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Strong Correlation between S̃V and FP

Hartmann (2013):
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SV = FP

Assume a is in left subtree Tl and |Tl| = j.

Lemma

We have,

SVT (a) =
1

j
+ SVTl(a)

and

FPT (a) =
1

j
+ FPTl(a).

Theorem (F. and Jin; 2015)

We have,
SVT (a) = FPT (a).

Michael Fuchs (NCTU) Phylogenetic Trees (PTs) June 30th, 2015 23 / 45



SV = FP

Assume a is in left subtree Tl and |Tl| = j.

Lemma

We have,

SVT (a) =
1

j
+ SVTl(a)

and

FPT (a) =
1

j
+ FPTl(a).

Theorem (F. and Jin; 2015)

We have,
SVT (a) = FPT (a).

Michael Fuchs (NCTU) Phylogenetic Trees (PTs) June 30th, 2015 23 / 45



SV = FP

Assume a is in left subtree Tl and |Tl| = j.

Lemma

We have,

SVT (a) =
1

j
+ SVTl(a)

and

FPT (a) =
1

j
+ FPTl(a).

Theorem (F. and Jin; 2015)

We have,
SVT (a) = FPT (a).

Michael Fuchs (NCTU) Phylogenetic Trees (PTs) June 30th, 2015 23 / 45



S̃V and FP (i)

DT (a) = depth of a in T :

FPT (a) = SVT (a) = S̃VT (a) +
DT (a)

n
.

Dn = depth of random taxon in random PT of size n.

Lemma

We have,

Var(FPn) = 10− 6H
(2)
n−1 −

6

n
− 4

n2
∼ 10− π2

Var(Dn) = 2Hn − 4H(2)
n + 2 ∼ 2 log n,

where Hn =
∑

1≤j≤n 1/j and H
(2)
n =

∑
1≤j≤n 1/j2.
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S̃V and FP (ii)

Lemma

We have,

Cov(FPn, Dn) = 4H
(2)
n−1 − 6 +

2

n
+

4

n2
∼ 2π2

6
− 6.

Theorem (F. and Jin; 2015)

The correlation coefficient ρ(S̃Vn,FPn) of modified Shapley value and fair
proportion index tends to 1, i.e.,

lim
n→∞

ρ(S̃Vn,FPn) = 1.
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Short Summary

Shapley value was introduced for the purpose of making conservation
decisions in genetics.

Fair proportion index was used by Zoological Society of London but
its biodiversity value was unclear.

Strong correlation between modified Shapley value and fair proportion
index was observed by Hartmann and others.

We proved that Shapley value equals fair proportion index.

We showed that correlation coefficient of modified Shapley value and
fair proportion index tends to 1 in Yule-Harding model and other
random models.
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Social Animals

Consider n animals of a class of social animals. Construct a random PT
with leaves representing the animals.

Describes the genetic relatedness of the animals.
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Animal Groups

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

−→ neutral model.

Clade of a leaf:

All leafs of the
tree rooted at the
parent.
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Animal Groups

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

−→ neutral model.

# of groups

m
# of maximal
clades

m
2
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# of Groups

Xn = # of groups under the Yule Harding model

We have,

Xn
d
=

{
1, if In = 1 or In = n− 1,

XIn +X∗n−In , otherwise,

where In = Uniform{1, . . . , n− 1} is the # of animals in the left subtree
and X∗n is an independent copy of Xn.

Theorem (Durand and François; 2010)

We have,

E(Xn) ∼ an
(
a :=

1− e−2

4

)
.
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Comparison with Real-life Data

Durand, Blum and François (2007) presented the following data:
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Yi-Wen’s Thesis (2012)
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Variance and SLLN

Theorem (Lee; 2012)

We have,

Var(Xn) ∼ (1− e−2)2

4
n log n = 4a2n log n.

Theorem (Lee; 2012)

We have,

P

(
lim
n→∞

∣∣∣∣ Xn

E(Xn)
− 1

∣∣∣∣ = 0

)
= 1.

For SLLN, Xn is constructed on the same probability space via the tree
evolution process underlying the Yule-Harding model.
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Method of Moments

Theorem

Assume that E(Xk
n) −→ E(Xk) for all k ≥ 1 and that X is uniquely

characterised by its sequence of moments. Then,

Xn
d−→ X.

Many sufficient conditions for X being uniquely characterized by its
moments are known, e.g., ∑

k≥1
E(Xk)

zk

k!

has a positive radius of convergence.
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Higher Moments

Theorem (Lee; 2012)

For all k ≥ 3,

E(Xn − E(Xn))k ∼ (−1)k
2k

k − 2
aknk−1.

This implies that all moments larger than two of

Xn − E(Xn)√
Var(Xn)

tend to infinity!

Question: Is there a limit distribution?
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Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.
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Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒ ⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.
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Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)

We have,
E(Yn) ∼ n

log n

and for k ≥ 2

E(Yn − E(Yn))k ∼ (−1)k

k(k − 1)
· nk

logk+1 n
.

Thus, again the limit law of

Yn − E(Yn)√
Var(Yn)

cannot obtained from the method of moments!
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Limit Law

Theorem (Drmota, Iksanov, Moehle, Roessler; 2009)

We have,
log2 n

n
Yn − log n− log logn

d−→ Y

with
E(eiλY ) = eiλ log |λ|−π|λ|/2.

The law of Y is spectrally negative stable with index of stability 1.

Different proofs of this result exist.
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Limit Law of Xn

Theorem (Drmota, F., Lee; 2014)

We have,
Xn − E(Xn)√

Var(Xn)/2

d−→ N(0, 1).

For the proof, we use singularity perturbation analysis.

A probabilistic proof explaining the curious normalization was given
recently.

S. Janson (2015). Maximal clades in random binary search trees,
Electronic J. Combinatorics, 22:1, paper 31.
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Some Ideas of the Proof (i)

Set
X(y, z) =

∑
n≥2

E
(
eyXn

)
zn.

Then,

z
∂

∂z
X(y, z) = X(y, z) +X2(y, z) + eyz2

2eyz3

1− z
.

This is a Riccati DE.

Set

X̃(y, z) =
X(y, z)

z
.

Then,
∂

∂z
X̃(y, z) = X̃2(y, z) + ey

1 + z

1− z
.

Michael Fuchs (NCTU) Phylogenetic Trees (PTs) June 30th, 2015 41 / 45



Some Ideas of the Proof (i)

Set
X(y, z) =

∑
n≥2

E
(
eyXn

)
zn.

Then,

z
∂

∂z
X(y, z) = X(y, z) +X2(y, z) + eyz2

2eyz3

1− z
.

This is a Riccati DE.

Set

X̃(y, z) =
X(y, z)

z
.

Then,
∂

∂z
X̃(y, z) = X̃2(y, z) + ey

1 + z

1− z
.

Michael Fuchs (NCTU) Phylogenetic Trees (PTs) June 30th, 2015 41 / 45



Some Ideas of the Proof (ii)

Set

X̃(y, z) = −V
′(y, z)

V (y, z)
.

Then,

V ′′(y, z) + ey
1 + z

1− z
V (y, z) = 0.

This is Whittaker’s DE.

Solution is given by

V (y, z) = M−ey/2,1/2

(
2ey/2(z − 1)

)
+ c(y)W−ey/2,1/2

(
2ey/2(z − 1)

)
,

where

c(y) = −
(
ey/2 − 1

)
M−ey/2+1,1/2

(
−2ey/2

)
W−ey/2+1,1/2

(
−2ey/2

) .
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Some Ideas of the Proof (iii)

Lemma

V (y, z) is analytic in

∆ = {z ∈ C : |z| < 1 + δ}\
{branch cut from 1 to ∞}

for all |y| < η.

Moreover, V (y, z) has only one
(simple) zero with

z0(y) = 1− ay
+ 2a2y2 log y +O(y2).

δ z0(y)

1

∆
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Some Ideas of the Proof (iv)

Let y = it/(2a
√
n log n). Then,

E
(
eyXn

)
=

1

2πi

∫
C

X(y, z)

zn+1
dz.

Lemma

We have,

E
(
eyXn

)
= z0(y)−n +O

(
log3 n

n

)
.

This together with the expansion of z0(y) yields

E
(
eyXn

)
= exp

(
it
√
n

2
√

log n
− t2

4

)(
1 +O

(
log log n

log n

))
.
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Summary

We gave a comprehensive study of pattern occurrences in random
phylogenetic trees.

We explained the strong correlation between Shapley value and fair
proportion index in phylogenetic trees. This is of great interest for
people working in biodiversity.

We found a curious central limit theorem for the number of groups
formed by social animals under the neutral model.

Analytic combinatorics is useful in studying mathematical problems
for random phylogenetic trees. We expect many more applications.

More input from biologists is needed to make our results more
relevant from the point of view of applications.
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