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Preface

Phylogenetics is the study of relationships between organisms. The inferred relationship be-

tween organisms is usually represented by a tree called phylogenetic tree.

The first part of this thesis establishes some tools that will be proven useful in the study

of Phylogenetics. After this, we present and study three sets of parameters that arise from

investigating the structure and applications of phylogenetic trees.

The first set of parameters that we will consider is concerned with the Shapley values. These

values give a fair distribution of resources among species. Different definitions of Shapley

values have appeared in recent studies, the rooted and unrooted Shaley values. In one of those

studies, e.g., the rooted Shapley value was proven to be equal to the fair proportion index, a

value that is a lot easier to compute than the rooted Shapley value. Moreover, numerical data

suggested that the unrooted Shapley value is highly correlated to the fair proportion index. In

this thesis, we will give a theoretical justification of the above claim. To be precise, we will

show that the the correlation coefficient between unrooted Shapley value and fair proportion

index tends to 1 under the β-splitting model for β > −1. We will also present data that the

convergence slows down as β approaches −1.

The second set of parameters we will consider in this thesis involves the group formation

process. We will consider the number of groups formed, groups of fixed size, and the size of the

largest group. Here, we will derive moments and limit laws of these values under the uniform

model. Our result show that there are only a finite number of groups. Moreover, we observed

that there is only one large group and the other groups are small in size. We end this part by

comparing our results to the existing results under the Yule-Harding model.

Finally, the ancestral configuration at a node will give the last set of parameters that we will

study. The ancestral configuration at a node is the set of distinct gene lineages that pass through

the node. In particular, we are interested in the number of ancestral configurations at the root

Rn and the total number of ancestral configurations Tn. We studied the mean, variance and
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limit laws of Rn and Tn under the uniform and Yule-Harding model. We observed that both Rn

and Tn follow a lognormal distribution. Moreover, the moments of Rn and Tn have the same

exponential growth factor.

Finally, we will conclude the thesis by comparing our results to the existing results about

these parameters and give some outlook on possible future research on these parameters.
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Chapter 1

Introduction

Phylogenetics concerns the study of evolutionary relationships between species or groups of

organisms. Physiological properties such as physical appearance and behaviour were used in

classical studies to determine the relationship of species. Advancement of technology offers

modern phylogenetics more precise connections between species by extracting the information

embedded in their DNA sequences. Researchers studying phylogenetics use evolutionary (phy-

logenetic) trees to represent the relationship of the species. This representation can be traced

back to the "Transmutation of Species" by Charles Darwin dated back to 1837 (see Figure 1.1).

Due to the complexity of reconstructing evolutionary histories and developing evolutionary

models, phylogenetics is now a thriving area of research which includes mathematics, statistics,

computer science, and biology.

Currently, phylogenetics is concerned with far more than the mere analysis of the structure

of evolutionary trees. Applications of phylogenetics can be found in a lot of different areas

such as conservation biology (see (Baker and Palumbi, 1994)), epidemiology (see (Bush et al.,

1999)), forensics (see (Ou et al., 1992)), gene function prediction (see (Chang and Donoghue,

2000)), and drug development (see (Chang et al., 2002)).

The goal of this thesis is to solve some problems in phylogenetics. The thesis is divided into

three problems. First, we study the phylogenetic diversity index of species in an evolutionary

tree model which gives each species a "rank" to determine its importance in the group. Second,

we study a model for animal grouping based on evolutionary trees. Finally, we study a structural

property of evolutionary trees which reflects how different genetic trees arise from an underlying

evolutionary trees.
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Figure 1.1: A page of "Transmutation of Species" by Charles Darwin which includes a diagram

used to represent the relationship of species. The node labelled by 1 represents the common

ancestor of the current species. Moreover, the leaves labelled by letters A, B, C, and D are the

current existing species, whereas the leaves without labels are the extinct species.

1.1 Evolutionary Trees

This section presents different tree structures that will be used in the thesis. All trees dis-

cussed throughout the thesis possess a common underlying structure which is they are rooted

bifurcating trees. Moreover, edges are often labelled where the labels represent evolutionary

information (such as, e.g., time); where we usually choose all weights equal to 1 since we will

mainly consider this case in the succeeding chapters. The only difference of these tree structures

are whether the internal nodes and leaves are labelled or not and whether the tree is embedded

into the plane or not. The labelling and embedding are used to interpret different phenomena
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such as distinction of species and hierarchy in evolutionary history.

A

a b c d e f

B

fedcba

Figure 1.2: The trees A and B represent different phylogenetic trees with six taxa. However,

the two trees are isomorphic since they have the same underlying topology.

Phylogenetic Tree. A phylogenetic tree is a rooted bifurcating tree with n labelled leaves (or

taxa). A phylogenetic tree is also known as labelled topology. We denote the set of phylogenetic

trees of size n by Tn and T =
⋃
n≥2

Tn. As a convention, we assume that the labels of the taxa

are ordered linearly, that is, there is an ordering ≺ on the labels {a, b, c, d, e, . . .} such that

a ≺ b ≺ c ≺ d ≺ e · · · . We also say that two phylogenetic trees τ1, τ2 ∈ Tn are isomorphic,

denoted by τ1
∼= τ2, if the trees are equal when the labelling is removed. In Figure 1.2, the

phylogenetic tree in A and phylogenetic tree in B are two different phylogenetic trees but the

two trees have the same underlying tree and hence they are isomorphic. Using the fact that every

phylogenetic tree with n taxa produces 2n− 1 (which is the number of edges of a phylogenetic

tree) distinct phylogenetic trees with n + 1 taxa by inserting a leaf on one of its edges, the

number of phylogenetic trees with n taxa is |Tn| = (2n− 3)!! = 1× 3× · · · × (2n− 3). This

expression can be rewritten as

|Tn| =
(2n)!

2n(2n− 1)n!
(1.1)

with associated exponential generating function

T (z) =
∞∑
n=1

|Tn|zn

n!
= z +

z

2
+

3z2

6
+

15z3

24
+ · · ·

given by

T (z) = 1−
√

1− 2z.

Plane Binary Tree. An orientation of a rooted bifurcating tree τ whose leaves are unlabelled

is an embedding of τ into the plane. This gives τ a left-right orientation on the branches of the

tree arising from an internal node. Such a rooted bifurcating tree with an orientation is called

3



A B

4 5 3
2

1

5 4 3
2

1

534
2

1

354
2

1

Figure 1.3: The trees in A show different orientations of a tree with six taxa. Meanwhile, the

trees in B show different increasing labelling of its internal nodes.

plane binary tree. It is also called ordered unlabelled topology. Moreover, sometimes a plane

binary tree is pruned which means that only the internal structure of the tree is considered.

Here, we denote the set of plane binary trees with n taxa by Bn and B =
⋃
n≥2

Bn. The number

of plane binary trees can be derived from (1.1) by adding first an orientation of the edges and

then removing the labelling of its taxa. This gives us

|Bn| =
2n−1

n!
· (2n)!

2n(2n− 1)n!
=

(2n− 2)!

n(n− 1)!(n− 1)!
. (1.2)

Notice that this is the n − 1-st Catalan number, denoted by Cn−1, where the n-th Catalan

number is given by

Cn =
1

n+ 1

(
2n

n

)
(1.3)

with generating function

C(z) =
∑
n≥0

Cnz
n =

1−
√

1− 4z

2z
. (1.4)

Ranked Plane Binary Tree. Let τ ∈ Bn be a plane binary tree. For each internal node of τ

assign a unique number in {1, 2, . . . , n − 1} such that each ancestor has higher label than the

descendants, that is, we assign a temporal ordering on the internal nodes of τ . A plane binary

tree with such a temporal ordering on the internal nodes is called a ranked plane binary tree. It

is also known as binary increasing tree or ordered unlabelled history. We denote the collection

of ranked plane binary trees by Fn and F =
⋃
n≥2

Fn. Notice that every ranked plane binary tree

with n taxa produces n unique ranked plane binary trees with n + 1 taxa by attaching a cherry

on a leaf of the tree. Thus, by induction, the number of ranked plane binary trees is given by

|Fn| = (n− 1)!. (1.5)

Ranked Phylogenetic Tree. A phylogenetic tree with a temporal labelling is called a ranked

phylogenetic tree. It is also known as labelled history or ranked dendogram. We denote the

collection of ranked phylogenetic trees on n taxa by Hn and H =
⋃
n≥2

Hn. The number of
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A

a b c d e f

4 5 3

2

1 B

fedcba

354

2

1

Figure 1.4: The trees A and B represent different ranked phylogenetic trees with six taxa.

ranked phylogenetic trees can be obtained from (1.5) by first labelling each taxon and then

removing the orientation of the branches arising from internal nodes. Thus, we have

|Hn| =
n!

2n−1
· (n− 1)!. (1.6)

1.2 Singularity Analysis

Consider the n-th Catalan number Cn and its generating function C(z). Notice that for large

values of n, computing the binomial coefficient is rather tedious. Moreover, just by looking at

(1.3) we can not easily figure out the behaviour of Cn. Fortunately, analytic combinatorics gives

us a systematic way to understand the behaviour of Cn through that of C(z).

Actually, in the above simple example, we can apply Stirling’s formula

n! ∼
√

2πn
(n
e

)n
to (1.3) to obtain

Cn ∼
4n
√
πn

3
2

. (1.7)

Notice that the above expression is easier to evaluate than the binomial coefficient. Moreover, it

gives an idea about how Cn behaves and in particular shows that it grows exponentially as fast

as 4n. The expression may not be precise but using more terms in the Stirling’s formula, the

error in (1.7) can be made as small as desired.

More generally, given a generating function G(z) for a sequence gn, we first need to extract

the coefficient ofG(z) and then determine the asymptotic behaviour of the coefficient. However,

most of the time (as we will see in the remainder of the thesis) despite having the generating

functionG(z), extracting the exact form of the coefficient ofG(z) is almost impossible. Thus, a
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natural question that arises is whether there is a method to obtain the asymptotics of gn directly

from the generating function G(z)?

Such a question can often be answered by the method of singularity analysis from analytic

combinatorics. Notice that C(z) has a removable singularity at z = 0. By redefining C(0) = 1,

we can make C(z) analytic at z = 0. Also, observe that C(z) is not defined on the branch cut[
1
4
,∞
)
. Unlike the removable singularity, z = 1/4 cannot be removed. Finally, note that Cn

grows exponentially as fast as the reciprocal of 1/4. Again, a natural question pops up: Is there

a connection between the two? This will be also answered by singularity analysis. To begin

with, we recall some definitions from complex analysis.

Let Ω be the interior of a simple closed curve γ. Consider a function f(z) which is defined

on Ω and z0 be a point on the boundary curve γ. We say that z0 is a singular point or singularity

if f(z) is not analytically continuable at z0, that is, we cannot find an analytic function f ∗(z)

and an open set Ω∗ where z0 ∈ Ω∗ such that f(z) = f ∗(z) in Ω ∩ Ω∗. For example, z = 1/4 is

a singularity of (1.4).

Now, we need to find the locations of such singularities of f(z). Recall that a power series

is analytic inside its disc of convergence. Moreover, the function must not be analytic at at least

one point on the boundary of this disc. This gives us the location of a dominant singularity of f

which is a singularity with least modulus. The next theorem formalizes this.

Theorem 1. Let f(z) be a function which is analytic at the origin. Suppose that the power

series expansion of f(z) at the origin has finite radius of convergence R. Then f(z) has a

singularity on the boundary of the disc of convergence γ = {z ∈ C : |z| = R}.

Due to the fact that the problems in this thesis are arising from enumeration problems,

the generating functions involved in our study will have non-negative coefficients. The next

theorem is a refinement of Theorem 1 taking into consideration functions f whose power series

has non-negative coefficients.

Theorem 2 (Pringsheim’s Theorem). Let f(z) be a function which is analytic at the origin.

Suppose that the power series expansion of f(z) at the origin has finite radius of convergence

R and non-negative coefficients. Then f(z) has a singularity at z = R.

We have now a method for locating at least one of the dominant singularity of a function

f(z). Next, we need to establish the relationship between the coefficients of the series expansion

of f(z) and its dominant singularity. As observed earlier, we see that the coefficients seem to
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grow as the reciprocal of the modulus of the dominant singularity. Before we get into that, we

need to define the following.

A sequence {an}n≥0 is said to be of exponential order Kn, denoted by the bowtie symbol

./, if and only if lim sup |an|1/n = K.We know that the limit supremum induces a natural upper

bound and lower bound on an. That is, for any ε > 0, we have

1. |an| > (K − ε)n infinitely often, that is, |an| > (K − ε)n for infinitely many values of n;

2. |an| < (K + ε)n almost everywhere, that is, |an| < (K + ε)n except for finite values of n.

With this we have a way of understanding the n-th coefficient fn := [zn]f(z) of the series

expansion of f(z) at z = 0 in terms of its exponential behaviour. Notice that by the definition

of the radius of convergence, for any ε > 0, we have

1. limn→∞ fn(R− ε)n = 0 since
∑

n≥0 fn(R− ε)n converges, in particular, fn(R− ε)n < 1

for sufficiently large n;

2. fn(R + ε)n is not bounded since
∑

n≥0 fn(R + ε)n does not converge for all ε > 0, in

particular, fn(R + ε)n > 1 for infinitely many n.

From the previous two remarks, we observe that

fn ./
1

Rn
.

The next theorem formalizes this observation.

Theorem 3. Let f(z) be a function which is analytic at the origin. Suppose that the dominant

singularities are of modulus R. Then, the coefficients fn = [zn]f(z) of its power series satisfy

fn ./
1

Rn
.

From the previous theorem, we can now have the first principle of the coefficient asymptotic:

The location of the dominant singularity of f(z) gives the exponential growth behaviour of the

coefficients of its power series.

From the above argument, if a function f(z) has a dominant singularity of modulus R, then

fn = R−nθ(n) (1.8)
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with lim sup |θ(n)|1/n = 1. In order to have a more precise form of fn, we need to determine the

behaviour of θ(n). The study of θ(n) leads us to the second principle of coefficient asymptotic:

The sub-exponential factor θ(n) is determined by the nature of the dominant singularities of

f(z).

In order to explain this, first consider the function (z − β)−r, r ∈ N which has dominant

singularity at β 6= 0. Notice that by extracting the coefficients of the power series of this

function, we have

[zn]
1

(z − β)r
=

(−1)r

βr
[zr]

1

(1− z
β
)r

=
(−1)r

βr

(
n+ r − 1

r − 1

)
β−n.

By definition, we know that the binomial coefficient above is a polynomial in n of degree r− 1.

Thus, the sub-exponential factor of (z − β)−r is a polynomial of degree r − 1. In addition,

notice that if β is the sole pole of a meromorphic function f(z) of order r on |z| ≤ R we can

write f(z) locally around β as

f(z) =
∑
j≥−r

cj(z − β)j.

Let h(z) = f(z) −
∑
−r≤j<0

cj(z − β)j . In (Flajolet and Sedgewick, 2009), the authors showed

that

[zn]h(z) = O(R−n).

By allowing more poles, we have the following theorem.

Theorem 4. Let f(z) be a function meromorphic on closed discD = {z ∈ C : |z| ≤ R} which

is analytic at the origin and boundary of D. Let β1, β2, . . . , βm be the distinct poles of f(z) in

D and p1, p2, . . . , pm be the order of the poles, respectively. Then,

fn =
m∑
j=1

Πj(n)β−nj +O(R−n). (1.9)

for some polynomials Πj(x) of degree pj − 1.

Notice that the asymptotic behaviour of meromorphic function relies strongly on the factor

(z − β)−r as z tends to the singularity β. Also, it is sufficient to consider functions of the form

(1− z)−r since

[zn](z − β)−r = (−1)rβ−n−r[zn](1− z)−r.

The above situation motivates us to study more general functions f(z) of the form (1 − z)−α

where α ∈ C. Here, by using Cauchy integral formula

[zn]f(z) =
1

2πi

∫
γ

f(z)

zn+1
dz

8
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γ1

γ2

γ3
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γ

Figure 1.5: Contour γ consisting of the contours γ1, γ2, γ3, γ4.

and the contour γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 where

γ1 = {z ∈ C : z = 1 + eit/n, t ∈ [−π/2,−3π/2]},

γ2 = {z ∈ C : z = t+ i/n, t ∈ [1,
√
R2 − n−2]},

−γ3 = {z ∈ C : z = t− i/n, t ∈ [1,
√
R2 − n−2]},

and

γ4 = {z ∈ C : z = Reit, t ∈ [arcsin((nR)−1), 2π − arcsin((nR)−1)]}

(see Figure 1.5), we can analyse the asymptotic behaviour of the coefficient of f(z). In partic-

ular, if we use the substitution

z = 1 +
t

n
,

we have

dz =
dt

n
and (1− z)−α = nα(−t)−α.

Moreover,

lim
n→∞

zn+1 = lim
n→∞

(1 + t/n)n+1 = et.

Thus,

[zn](1− z)−α =
1

2iπ

∫
γ

f(z)

zn+1
dz ∼ nα−1

2πi

∫
H
e−t(−t)−α dt,

whereH is the Hankel contour. Recall that

1

2πi

∫
H
e−t(−t)−α dt =

1

Γ(α)
.

Consequently,

[zn](1− z)−α ∼ nα−1

Γ(α)
.

By refining this, we have the following result.
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Theorem 5. Let α ∈ C\Z≤0 and f(z) = (1−z)−α. Then, for sufficiently large n, the coefficient

fn = [zn]f(z) admits a complete asymptotic expansion

fn ∼
nα−1

Γ(α)

(
1 +

∞∑
k=1

pk
nk

)
,

where pk is a polynomial in α of degree 2k.

In particular, if we compute the first few terms of the asymptotic expansion, we have

[zn]f(z) =
nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2
+O

(
1

n3

))
.

For example, applying Theorem 5 to C(z), we have

[zn]C(z) = −1

2
[zn+1]

√
1− 4z

= −2 · 4n[zn+1]
√

1− z

∼ −2 · 4nn−3/2

Γ(−1/2)
=

4n√
πn3/2

.

Furthermore, we can also derive a more precise expansion for Cn, e.g.,

Cn =
4n√
πn3/2

(
1 +

3

8n
+

25

128n2
+O

(
1

n3

))
. (1.10)

Next, we will study a more general form of f(z) which is (1− z)−α
(

1

z
log

1

1− z

)β
. Here,

using the same substitution for z, we have

f(z) = (1− z)−α
(

1

z
log

1

1− z

)β
∼ nα(−t)−α(log n)β

(
1− log(−t)

log n

)β
.

Thus, we have

fn ∼
nα−1(log n)β

2πi

∫
e−t(−t)−α

(
1− log(−t)

log n

)β
dt.

From this, we obtain a similar result for a larger class of functions.

Theorem 6. Let α ∈ C\Z≤0, β ∈ C, and f(z) = (1 − z)−α
(

1

z
log

1

1− z

)β
. Then, for

sufficiently large n, the coefficient fn = [zn]f(z) admits a complete asymptotic expansion

fn ∼
nα−1

Γ(α)
(log n)β

(
1 +

c1

log n
+

c2

log2 n
+ · · ·

)
,

where ck =

(
β

k

)
Γ(α)

dk

dsk
1

Γ(s)

∣∣∣∣
s=α

.
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In fact, our functions usually do not have the form from Theorem 5 and Theorem 6. How-

ever, they do have this form if one gets close to singularities. Thus, we need the above results

with the O-notation and o-notation. Before we start, we give a definition.

Let φ,R ∈ R with R > 1 and 0 < φ < π
2
. For the parameters φ and R, define the open set

∆(φ,R) by

∆(φ,R) = {z | |z| < R, z 6= 1, |arg(z − 1)| > φ}.

An open set is called a ∆-domain if it is a ∆(φ,R) for some R and φ. A function is ∆-analytic

if it is analytic in some ∆-domain.

Theorem 7. Let α, β ∈ R and f(z) be a function that is ∆-analytic.

(i) Suppose f(z) satisfies

f(z) = O

(
(1− z)−α log

(
1

1− z

)β)
.

in the intersection of a neighbourhood of 1 and its ∆-domain. Then

[zn]f(z) = O(nα−1(log n)β).

(ii) Suppose f(z) satisfies

f(z) = o

(
(1− z)−α log

(
1

1− z

)β)
.

in the intersection of a neighbourhood of 1 and its ∆-domain. Then

[zn]f(z) = o(nα−1(log n)β).

Going back to C(z), we can write the function in the form

C(z) = 2− 2
√

1− 4z +O(
√

1− 4z)

as z tends to 1/4. From this, we again find the asymptotics of the coefficients of C(z) via

Theorem 5 and Theorem 7.

With the above theorem, we cover every type of function that arises from problems involved

in this thesis.

We now present a very useful tool in our computations. It shows that the singular expansion

of a function is closed under derivatives and integration.
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Proposition 1. Let f(z) be a ∆-analytic function with singular expansion

f(z) =
k∑
j=1

cj(1− z)αj +O
(
(1− z)β

)
.

Then, for each positive integer r, dr

dzr
f(z) is ∆-analytic and admits a singular expansion

dr

dzr
f(z) = (−1)r

k∑
j=1

cjΓ(αj + 1)

Γ(αj + 1− r)
(1− z)αj−r +O

(
(1− z)β

)
.

With logarithmic functions, one has a similar result. Let

f(z) = O
(
(1− z)α logβ(1− z)

)
.

Then, we have
dr

dzr
f(z) = O

(
(1− z)α−r logβ(1− z)

)
.

Proposition 2. Let f(z) be a ∆-analytic function with singular expansion

f(z) =
k∑
j=1

cj(1− z)αj +O
(
(1− z)β

)
.

Then
∫ z

0
f(t) dt is ∆-analytic. Moreover, assume that every αj and β are not equal to 1.

1. If β < −1, then
∫ z

0
f(t) dt has singular expansion

∫ z

0

f(t) dt = −
k∑
j=1

cj
αj + 1

(1− z)αj+1 +O
(
(1− z)β+1

)
.

2. If β > −1, then
∫ z

0
f(t) dt has singular expansion

∫ z

0

f(t) dt = −
k∑
j=1

cj
αj + 1

(1− z)αj+1 + C +O
(
(1− z)β+1

)
where C is the integration constant given by

C =
∑
αj<−1

cj
αj + 1

+

∫ 1

0

f(t)−
∑
αj<−1

cj(1− z)αj

 dt.

For the case that α = −1 or β = −1, we have∫ z

0

(1− z)−1 dz = log z and
∫ z

0

O
(
(1− z)−1

)
dz = O(log z).
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1.3 Generating Functions and Probability

Most of the enumeration we dealt with so far involves only one parameter, e.g., the number

of leaves. In this section, we are interested in adding more restrictions or parameters in our

enumeration problem. We start by defining the following as an analogy to the single parameter

case.

Let G be a family of objects with associated double-indexed sequence gn,k which counts

the number of objects in G with two parameters n and k. We define the bivariate generating

function as

G(u, z) =
∑
n≥0

∑
k≥0

gn,ku
kzn.

We say that G(u, z) is the bivariate generating function of G.

For example, we let G be the family of plane binary trees and gn,k denote the number of

plane binary trees with size n and k cherries. Then, the bivariate generating function of G is

given by

G(u, z) =
∑
n≥0

∑
k≥0

gn,ku
kzn.

Observe that the number of cherries can be counted by adding the number of cherries in the left

subtree and the number of cherries in the right subtree. Thus, we have

G(u, z) = z + uz2 +G2(u, z)− z2.

Notice that [zn]G(u, z) is the generating function of the number of plane binary trees with k

cherries in the class of plane binary trees with size n. This shows how plane binary trees with

k cherries are distributed over the class of plane binary trees with size n. With this, we have an

inkling of the relationship between bivariate generating function and probability. We make this

now precise.

Let X be a discrete random variable defined over a probability space S which takes on only

non-negative integers. The probability generating function of X is defined by

P (x) =
∑
k≥0

PS(X = k)xk.

Consider our previous example. If we let u = 1, then we get [zn]G(1, z) which is the

generating function of the set of plane binary trees. If we define Xn as the number of cherries

of a plane binary tree of size n chosen uniformly at random, then the probability generating
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function of Xn is given by

∑
k=0

PTn(Xn = k)uk =
[zn]G(u, z)

[zn]G(1, z)
.

The above result is summarized in the following theorem.

Theorem 8. Let G(u, z) be the bivariate generating function of a class G associated with a

parameters X and Y . Let Gn = {g ∈ G|Y (g) = n}. Then, the probability generating function

of X with element from Gn picked uniformly at random is

∑
k≥0

PGn(X = k)uk =
[zn]G(u, z)

[zn]G(1, z)
.

Moments can be obtained from this as follows.

Corollary 1. Let G(u, z) be the bivariate generating function of a class G associated with a

parameters X and Y . Let Gn = {g ∈ G|Y (g) = n}. Then

EGn(X(X − 1) · · · (X − r + 1)) =
[zn] ∂

r

∂ur
G(u, z)|u=1

[zn]G(1, z)
.

Apart from computing the expectation and higher moments of random variables, we are also

interested in the limit laws of random variables. To study the limit laws, we define the following

terms.

Let Dn, D be a family of distribution functions. Then Dn is said to converge weakly to D if

lim
n→∞

Dn(x) = D(x)

for each x ∈ R where D is continuous. If Xn and X are the random variables associated with

Dn and D, respectively, then we say that Xn converges in distribution or converges in law to

X . We also say that X is the limit distribution of Xn.

The random variables that will be considered throughout this thesis will be discrete and

non-negative since our problems arise from enumeration of a class of discrete objects. As

for the limit laws in this thesis they will be either discrete or continuous. We first consider a

discrete limit law and rephrase the above definition to this situation. The continuous case will

be discussed in Section 1.5.
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Let Xn be a sequence of non-negative discrete random variables. We say that Xn converges

in distribution or converges in law to a discrete random variable X if

lim
n→∞

P(Xn ≤ k) = P(X ≤ k)

for every k ≥ 0. Moreover, we say that there exists a local limit law if

lim
n→∞

P(Xn = k) = P(X = k)

for every k ≥ 0. Observe that both equations are equivalent by taking sums and differences

of probabilities. Thus, to obtain the required limits law, it is necessary to study P(Xn ≤ k)

or P(Xn = k). Generating functions can be used to study P(Xn = k) since we have already

established the relationship with G(u, z) in Theorem 8.

The next theorem describes the conditions under which the convergence of probability gen-

erating functions implies a discrete limit law.

Theorem 9. Let Ω be a set contained in the unit disc which has at least one accumulation

point. Let Xn be a sequence of random variables with probability generating function Pn(x) =∑
k≥0 P (Xn = k)xk. Suppose that there is a function P (x) =

∑
k≥0 pkx

k satisfying

lim
n→∞

Pn(x) = P (x)

for every x ∈ Ω. Then, Xn converges in distribution and with all its moments to a discrete

random variable X with probability generating function given by P (x).

In this thesis we will be considering the composition schema

F (u, z) = g(uh(z)).

We assume that the coefficients of g and h are non-negative and the composition is well-defined.

These conditions can be easily verified since our problem is enumeration of discrete objects.

Next, let ρg and ρh be the radii of convergence of g and h, respectively. We also set

τg = lim
x→ρ−g

g(x) and τh = lim
x→ρ−h

h(x).

The limit exist or infinite since the coefficient of the functions are non-negative. Notice that the

singularity of F (u, z) on the positive real axis depends on the value of τh and ρg which divides

the study in three different cases.
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The composition schema F (u, z) = g(uh(z)) is said to be subcritical if τh < ρg, critical if

τh = ρg, and supercritical if τh > ρg.

In here, we are interested in the subcritical composition schema. The next theorem shows a

limit law for a subcritical composition schema.

Theorem 10. Consider the bivariate composition schema F (u, z) = g(uh(z)). Assume that

g(z) and h(z) satisfy the subcritical condition. In addition, assume that h(z) has a unique

singularity at ρh on its disc of convergence and has an expansion

h(z) = τh − c
(

1− z

ρh

)λ
+ o

((
(1− z

ρh

)λ)
,

where c ∈ R+, 0 < λ < 1 in a ∆−domain. Then, for a sequence of random variables Xn

defined by

P (Xn = k) =
[ukzn]F (u, z)

[zn]F (1, z)
,

we have a convergence in distribution and with all its moments to a discrete random variable

X with probability generating function given by

PX(u) =
ug′(τhu)

g′(u)
.

Proof. First, we fix u ∈ (0, 1). The subcritical condition and the choice of u tells us that the

dominant singularity of F (u, z) is at ρh. Moreover, as z → ρh, we have

F (u, z) = g(τhu)− cug′(τhu)(1− z/ρh)λ(1 + o(1)).

By Theorem 5 and Theorem 7, we have

lim
n→∞

[zn]F (u, z)

[zn]F (1, z)
=
ug′(τhu)

g′(τh)
.

Finally, the result follows directly from Theorem 9.

1.4 Random Models

There are different reasons as to why we are considering random models in studying structural

properties and patterns in phylogenetic trees. Random models are used to reconstruct evolution-

ary processes and these reconstructed processes are then compared with the actual process or

data. These models can be used to predict the outcome of some experiment or verify some hy-

pothesis on evolutionary patterns. A wide array of statistical methods are now available which

simplify seemingly complicated computations.

16



In this chapter, we will present two classical random models that generate random phylo-

genetic trees, namely the Uniform model and the Yule-Harding model. These random models

where chosen in this study mainly because of their simplicity. In addition, many mathematical

tools are now available to assist in the computation process. With these tools, results for differ-

ent parameters of trees are widely been studied and can be used for further studies. At the end

of this chapter, we will present a model proposed by Aldous which generalizes the two models.

Uniform Model. The first model we consider is the Uniform Model. This model is also

known as the Proportional to Distinguishable Arrangement (PDA) model. In this model, every

tree is assigned the same probability. The model can be similarly defined for different evo-

lutionary tree structures. To avoid confusion when using different models simultaneously, we

denote the probability of choosing τ under the uniform model to be

PUnifM(τ) =
1

|M|

where M ∈ {Tn,Bn,Hn,Fn} and τ ∈ M. For example, the probabilities of a phylogenetic

tree under the uniform model to have the shapes in Figure 1.6A and Figure 1.6B is given by 1/5

and 4/5, respectively.

A B

Figure 1.6: Figures A and B are the possible tree shapes for a tree with 4 taxa.

Notice that no matter how we label the tree in Figure 1.6A, for some parameters X on the

tree, the parameters are independent of the labelling, e.g., the number of cherries (2), the height

of the tree (2), etc. We say that such parameters depend only on the shape of the tree, that is,

X (τ1) = X (τ2) whenever the trees τ1, τ2 have the same underlying shape.

The next result shows a relationship between the uniform model of phylogenetic trees and

plane binary trees.

Lemma 1. Let X be a parameter that depends only on the shape of the tree. The distribution of

X over random uniform phylogenetic trees of size n matches the distribution of X over random

uniform plane binary trees of size n.
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Proof. We show that for every rooted bifurcating tree τ of size n, we have

or(τ)

|Bn|
=
lab(τ)

|Tn|
,

where or(τ) and lab(τ) are the orientations of τ and the number of labellings of the leaves of

τ , respectively. To prove the claim, we observe that

or(τ) = 2n−1−s(τ)

which is the number of ways to orient the children of the n − 1 internal vertices of a rooted

bifurcating tree τ and

lab(τ) =
n!

2s(τ)

which is the number of ways to label the leaves of τ . Here, s(τ) is the number of symmetric

nodes of τ . The above equations, together with (1.1) and (1.2), justify the claim.

Note that
or(τ)

|Bn|
and

lab(τ)

|Tn|
are the probabilities of τ induced by the uniform distribution

over the set of plane binary trees and phylogenetic trees of n taxa, respectively. SinceX depends

entirely on the shape τ , we have the desired result.

Next, we have a similar result for ranked phylogenetic trees and ranked plane binary trees.

Lemma 2. Let X be a parameter that depends only on the shape of the tree. The distribution of

X over random uniform ranked phylogenetic trees of size n matches the distribution of X over

random uniform ranked plane binary trees of size n.

Proof. Similar to the proof of the previous theorem, we show that for every rooted bifurcating

tree of size n with temporal labelling, we have

or(τ)

|Fn|
=
lab(τ)

|Hn|

where or(τ) and lab(τ) are the orientations of τ and the number of labellings of τ , respectively.

Notice that

or(τ) = 2n−1−c(τ)

which is the number of ways to orient the children of the n − 1 internal vertices of a rooted

bifurcating tree τ and

lab(τ) =
n!

2c(τ)

which is the number of ways to label the leaves of τ . Here, c(τ) is the number of cherries in τ .

The above equation, together with (1.5) and (1.6), prove the claim.
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Note that
or(τ)

|Fn|
and

lab(τ)

|Hn|
are the probabilities of τ induced by the uniform distribution

over the set of ranked plane binary trees and ranked phylogenetic trees of n taxa, respectively.

Since X depends entirely on the shape τ , we have the desired result.

Due to the convenience of the left-right orientation of the children of a plane binary tree

and with Lemma 1, the study of the uniform model on phylogenetic trees sometimes intermixes

with the study of the uniform model on plane binary trees. The next result gives the distribution

of the sizes of the left and right subtrees of a uniformly generated plane binary tree.

Lemma 3. Let τ be a random uniform plane binary tree of size n. For i = 1, 2, . . . , n − 1, we

let PUnif (i) be the probability that the left subtree of τ is of size i. Then, we have

PUnif (i) =
Ci−1Cn−i−1

Cn−1

where Cn is the n-th Catalan number.

Proof. The proof directly follows from the number of plane binary trees of size nwhich is Cn−1,

the n− 1-st Catalan number.

Yule-Harding Model. The second model we consider is the Yule-Harding model. In general,

the random tree generated by the Yule-Harding model possesses the property that for each point

of time, each taxa has equal chance to split. By taking note of the time split, notice that we

generate a random ranked phylogenetic tree. Thus, we can say that the uniform model for Hn

induces the Yule-Harding model for the set of phylogenetic trees Tn.

A

a b c d e f

4 5 3

2

1 B

a b c d e f

4 3 5

2

1

Figure 1.7: The trees A and B represent different ranked phylogenetic trees with six taxa with

same underlying phylogenetic tree.

Different ranked phylogenetic trees may have the same underlying phylogenetic tree as

shown in Figure 1.7. Thus, we need to determine the number of ranked phylogenetic trees that
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share the same underlying phylogenetic tree. The correspond result can be found in Semple and

Steel (2003), where they state that for each phylogenetic tree τ with n taxa, there exist exactly

(n− 1)!∏n
r=3(r − 1)dr(τ)

ranked phylogenetic trees with underlying shape τ . Here dr(τ) is the number of internal vertices

of τ with r leaves descending from the vertex. Taking all ranked phylogenetic trees with the

same underlying phylogenetic tree, for each phylogenetic tree τ , we have

PY ule(τ) =
2n−1

n!
∏n

r=3(r − 1)dr(τ)
. (1.11)

Using this, the probabilities of a phylogenetic tree to have the shapes in Figure 1.6A and

Figure 1.6B are 1/3 or 2/3, respectively. This gives us a big difference compared to the uniform

model on phylogenetic trees. In particular, in contrast to the uniform model which gives each

tree an equal probability, the Yule-Harding model gives higher probabily to more balanced trees

since these trees have more rankings, compare with (1.11).

The next result relates the Yule-Harding model for phylogenetic trees and the uniform model

for ranked plane binary trees.

Lemma 4. Let X be a parameter that depends only on the shape of the tree. The distribution

of X over phylogenetic trees of size n under the Yule distribution matches the distribution of X

over random uniform ranked plane binary trees of size n.

Proof. Since the Yule model for phylogenetic trees is induced by the uniform model for ranked

phylogenetic trees, we see that the distributions of X is the same under the two models. By

using Lemma 2, we have the desired result.

The next result is an analog of Lemma 3 for uniform ranked plane binary trees.

Lemma 5. Let τ be a random uniform ranked plane binary tree of size n. For i = 1, 2, . . . , n−1,

we let PUnif (i) be the probability that the left subtree of τ is of size i. Then, we have

PUnif (i) =
1

n− 1
. (1.12)

Proof. From equation (1.5), we know that the number of ranked plane binary trees of size n is

(n−1)!. Moreover, the left subtree can be labelled by choosing i−1 labels from {2, 3, . . . , n−
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1}. Thus, we have

PUnif (i) =

(
n− 2

i− 1

)
(i− 1)!(n− i− 1)!

(n− 1)!

=
1

n− 1
.

This proves the claim.

The next model that we will introduce will be a generalization of the two models on phy-

logenetic trees above. It uses the same principle as the splitting process in the Yule model but

generalizes the splitting probabilities.

Aldous β-splitting Model. We describe a probability distribution on phylogenetic trees using

a probability distribution qn which is symmetric, that is qn(i) = qn(n− i) for i ∈ {1, 2, · · · , n}.

Figure 1.8 demonstrate the process. Consider a group of n nodes. Split the nodes into two group

according to the probability distribution qn with i nodes in the first group and n−i in the second

group. If one of the groups is empty, repeat this step until both groups are non-empty. Then,

continue the process with each group until every group contains only one node. This defines

a probability distribution on plane binary trees. By choosing random labels for the leaves and

forgetting the order, it also gives a probability distribution on phylogenetic trees.

A

Figure 1.8: The process of constructing the phylogenetic tree A using the splitting process.

In (Aldous, 1996), Aldous suggested to choose the nodes in [0, 1] and split according to a
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density function f(x) on [0, 1] which is symmetric. This gives

qn(i) = an(β)−1

(
n

i

)∫ 1

0

xi(1− x)n−if(x) dx (1.13)

where an(β) is a normalizing constant with

an(β) =

∫ 1

0

(1− xn − (1− x)n)f(x) dx = 1− 2

∫ 1

0

xnf(x) dx. (1.14)

Finally, he suggested a symmetric density function which is parametrized by −1 < β <∞ and

defined as

f(x) =
Γ(2β + 2)

Γ2(β + 1)
xβ(1− x)β.

Combining the above equation with (1.13) and (1.14), we have

qn(i) =
1

an(β)
· Γ(β + i+ 1)Γ(β + n− i+ 1)

Γ(i+ 1)Γ(n− i+ 1)

and

an(β) =

(
1− 2Γ(2β + 2)Γ(β + n+ 1)

Γ(β + 1)Γ(2β + n+ 2)

)
Γ(β + 1)2Γ(2β + n+ 2)

n!Γ(2β + 2)

for 1 ≤ i ≤ n − 1 and −1 < β < ∞. Notice that qn(i) is still well-defined for −2 < β ≤ −1

(with a different normalizing factor an(β)). Thus, we can further extend the definition of qn(i)

to −2 < β <∞.

In the sequel, we will need an asymptotic expansion of qn(i).

Lemma 6. For β > −1, we have

qn(i) =
Γ(2β + 2)

Γ(β + 1)2
n−2β−1iβ(n− i)β

(
1 +O

(
1

iε
+

1

(n− i)ε

))
, (1.15)

where ε > 0 is a sufficiently small constant.

Proof. For the proof, we use the well-known expansion

Γ(z + a)

Γ(z + b)
= za−b (1 +O(1/z)) , as z −→∞

which yields

Γ(β + i+ 1)Γ(β + n− i+ 1)

i!(n− i)!
=

Γ(β + i+ 1)Γ(β + n− i+ 1)

Γ(i+ 1)Γ(n− i+ 1)

= iβ(n− i)β
(

1 +O
(

1

i
+

1

n− i

))
.
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Similarly,

cn(β)−1 =
Γ(2β + 2)

Γ(β + 1)2
n−2β−1

(
1 +O

(
1

nβ+1

))(
1 +O

(
1

n

))
=

Γ(2β + 2)

Γ(β + 1)2
n−2β−1

(
1 +O

(
1

nε

))
,

where ε = min{0, β}+ 1. Multiplying the last two formulas gives the claimed result.

Since the β-splitting model induces both probability distributions on plane binary trees and

phylogenetic trees, we have the following result.

Lemma 7. Let X be a parameter that depends only on the shape of the tree. The distribution

of X over phylogenetic trees of size n under the β-splitting model matches the distribution of X

over plane binary trees of size n under the β-splitting model.

Special Cases. The following are the specific models that arises from the β-splitting model.

• β = −3/2. We have

qn(i) =
Ci−1Cn−i−1

Cn−1

.

Because of Lemma 3, this corresponds to the uniform model on plane binary trees and

thus uniform model on phylogenetic trees.

• β = 0. We have

qn(i) =
1

n− 1
.

We will show that this induces the Yule-Harding model on phylogenetic trees. Therefore,

let τ̃ be a plane binary tree. Then, the splitting probability gives

PBn(τ̃) =
1∏n

r=1(r − 1)dr(τ̃)
.

Thus, for phylogenetic trees τ we obtain

PTn(τ) =
2n−1

n!
∏n

r=1(r − 1)dr(τ)

which shows the claim; compare with (1.11).

• β = −1. We have

qn(i) =
n

2Hn−1

· 1

i(n− i)
where Hn is the n-th harmonic number. This gives a particular interesting random model

since it has been argued that this model gives the best fit for real-world models (see Blum

and François (2006)). Unfortunately, tools used to study this model have not yet been

developed. We will present some in the next Chapter.
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1.5 Additive Tree Parameters

In this section we will be studying certain tree shape parameters X that follow a specific recur-

sive pattern. Such patterns will be helpful in simplifying computations as will be seen in this

section and proceeding chapters. Moreover, the majority of the parameters under consideration

in this thesis will follow such a pattern.

Let τ be a rooted bifurcating tree. A parameterX of τ is said to be an additive tree parameter

if

X (τ) = X (τ1) + X (τ2) + f(τ) (1.16)

where τ0, τ1 are the two root subtrees of τ . We call f(·) the toll function.

For example, the number of cherries C of a rooted bifurcating tree τ is an additive parameter

since it follows

C(τ) = C(τ1) + C(τ2) + f(τ)

where the toll function is give by

f(τ) =

1, if |τ | = 2;

0, if |τ | 6= 2.

In Section 1.3, we have discussed that the limit law of the random variables that will be used

in this thesis is either discrete or continuous. The discrete case was discussed previously and

we are left with the continuous case. In the continuous case we will need the results in (Wagner,

2015). The theorems are stated as follows.

Proposition 3. Let X be an additive parameter on plane binary trees with toll function f .

Assume that the toll function satisfies∑
|τ |=n |f(τ)|
|Bn|

= O(cn)

where c ∈ (0, 1) and the sum is taken over all plane binary trees of size n. Let τn be a random

uniform plane binary tree of size n. Then, the mean µn = E(X (τn)) is given by

µn = 2µn+O(1)

where µ is given by

µ =
∑
τ

f(τ)21−2|τ |.
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Moreover, the variance σ2
n = Var(X (τn)) is given by

σ2
n = 2σ2n+O(1)

where σ2 is given by

σ2 =
∑
τ

f(τ)(2X (τ)− f(τ))21−2|τ | − 2µ
∑
τ

f(τ)(2|τ | − 1)21−2|τ |.

Finally, if in addition σ 6= 0, then the random variable

X (τn)− µn
σn

converges weakly to a standard normal distribution N (0, 1).

We consider the parameter C to give an illustration of the theorem. Notice that the toll

function f satisfies ∑
|τ |=n |f(τ)|
|Bn|

=

1, if n = 2

0, if n 6= 2

.

Thus, the bound is satisfied for any c ∈ (0, 1). Applying the theorem above, we get

µ =
1

8
and σ2 =

1

32
.

Therefore,

µn =
n

4
+O(1) and σ2

n =
n

16
+O(1).

Moreover,
C(τn)− µn

σn
→ N (0, 1).

This coincides with the results of McKenzie and Steel (2000).

Proposition 4. Let X be an additive parameter on ranked plane binary trees with toll function

f . Assume that the toll function satisfies∑
|τ |=n |f(τ)|
|Fn|

= O(cn)

where c ∈ (0, 1) and the sum is taken over all ranked plane binary trees of size n. Let τn be a

random uniform ranked plane binary tree of size n. Then, the mean µn = E(X (τn)) is given by

µn = µn+O(dn)

25



for any d ∈ (c, 1) where µ is given by

µ =
∑
τ

2f(τ)

(|τ |+ 1)!
.

Moreover, the variance σ2
n = Var(X (τn)) is given by

σ2
n = σ2n+O(dn)

for any d ∈ (c, 1) and

σ2 =
∑
τ

2f(τ)(2X (τ)− f(τ))

(|τ |+ 1)!
− µ2 +

∑
τ1

∑
τ2

4f(τ1)f(τ2)

(|τ1|+ 1)!(|τ2|+ 1)!
×

(
(|τ1| − 1)(|τ2| − 1)

|τ1|+ |τ2| − 1
− |τ1| − |τ2|+ 2 +

(|τ1| − 1)(|τ2| − 1)

(|τ1|+ |τ2|)(|τ1|+ |τ2|+ 1)

+
(|τ1| − 1)2|(τ2| − 1)2

(|τ1|+ |τ2| − 1)(|τ1|+ |τ2|)(|τ1|+ |τ2|+ 1)

)
.

Finally, if in addition σ 6= 0, then the random variable

X (τn)− µn
σn

converges weakly to a standard normal distribution N (0, 1).

We consider the parameter C to give an illustration of the theorem. Notice that the toll

function f satisfies ∑
|τ |=n |f(τ)|
|Fn|

=

1, if n = 2

0, if n 6= 2

.

Thus, the bound is satisfied for any c ∈ (0, 1). Applying the theorem above, we get

µ =
1

3
and σ2 =

2

45
.

Therefore, 1

µn =
n

3
+O(dn) and σ2

n =
2n

45
+O(dn)

for any d ∈ (0, 1). Moreover,
C(τn)− µn

σn
→ N (0, 1).

Since the number of cherries depends only on the shape of the tree, this again coincides with

the results in (McKenzie and Steel, 2000) on the number of cherries of phylogenetic trees under

Yule-Harding model.
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Chapter 2

Shapley Values and Fair Proportion Index

In recent year, conservation of biodiversity gains increased in popularity because of the declin-

ing population of several animal species in a particular ecosystem. Limited amount of resources

prohibits groups to allocate optimal amount of resources to support every conservation projects.

This led to the study on how resources should be allocated to maximize the worth of every sup-

ply available. This is also called the Noah’s Ark Problem - optimal allocation of limited amount

of resources to competing species, see (Weitzman, 1998). Along with this, a metric must be

devised to measure the “importance” of species in the ecosystem.

In (Shapley, 1988), the author suggested a measure which gives a “fair” distribution of re-

sources based on the performance of an individual in working with a group. It was originally

used in cooperative game theory and subsequently refitted in the phylogeny setting. This mea-

sure is called the Shapley value which was named in honour of Lloyd Shapley. Several versions

of this value appeared in biodiversity and the relationships between these values have been stud-

ied, see (Haake et al., 2008; Wicke and Fischer, 2017; Fuchs and Jin, 2015; Hartmann, 2013).

The Shapley value was naturally defined on phylogenetic trees since the trees represent

e f g h i

1

1 1 1 1

1

1

1

leaf SV[r]
τ SV[u]

τ

e 3/2 26/15

f 3/2 26/15

g 11/6 91/60

h 11/6 91/60

i 4/3 27/20

Figure 2.1: A phylogenetic tree with rooted and unrooted Shapley value for each leaf.
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interaction between different species. So, we begin with a phylogenetic tree τ with edge weight

1, see Figure 2.1. For each subset S of leaves of τ , the unrooted biodiversity of S, denoted

by PD[u]
τ (S), is defined to be the sum of all weights of the edges of the minimal spanning tree

containing S (which is also called the Steiner tree of S in some combinatorics literature). For a

leaf a of τ , we define the unrooted Shapley value of a by

SV[u]
τ (a) =

1

n!

∑
S,a∈S

(|S| − 1)!(n− |S|)!
(

PD[u]
τ (S)− PD[u]

τ (S \ {a})
)
, (2.1)

where n is the number of leaves of τ and the sum runs over all sets S of leaves containing a.

Taking a = e in Figure 2.1, we have SV[u]
τ (e) = 26/15. The Shapley values of the other leaves

can be seen in Figure 2.1.

We now explain the rationale behind the formula of the Shapley value. The unrooted biodi-

versity PD[u]
τ (S) describes the contribution of the group S and thus, the expression PD[u]

τ (S)−

PD[u]
τ (S \ {a}) describes the contribution of a in the group. Next, we take all the possible or-

dering of leaves of τ such that a is in the |S|-th position and the first |S| positions are occupied

by the leaves in S. Notice that regardless of how we reposition the first |S| − 1 leaves and the

final n − |S| leaves, this always gives a PD[u]
τ (S) − PD[u]

τ (S \ {a}) contribution. There are

(|S| − 1)!(n− |S|)! such orderings. Taking into account all n! possible ways to order the leaves

of τ , we have the formula. This suggests that in Figure 2.1, the species e and f must have higher

allocation of resources since they have higher contribution in the group.

The unrooted Shapley is simply called Shapley value in (Wicke and Fischer, 2017; Haake

et al., 2008) but because of different definitions of the Shapley value, the prefix “unrooted" is

added in this work. This is due to the fact that the root was disregarded in the definition of the

unrooted Shapley value. This will be made clearer as we define a second Shapley value below.

In (Hartmann, 2013), the Shapley value was defined with the rooted biodiversity of S which

is defined as the sum of all weights of the edges of the minimal spanning tree containing S and

the root (which is also called the ancestor tree of S in combinatorics). Correspondingly, the

rooted Shapley value is given by

SV[r]
τ (a) =

1

n!

∑
S,a∈S

(|S| − 1)!(n− |S|)!
(

PD
[r]
T (S)− PD

[r]
T (S \ {a})

)
. (2.2)

The values for this Shapley value for the leaves of the tree from Figure 2.1 can also be found

in the table in Figure 2.1. From the two definitions of Shapley values, the prefixes rooted and

unrooted should be clear.
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Even though the Shapley values give a very natural interpretation for the ordering of the

leaves, both definition require a lot of computing time. Thus, many experts tried to define

indices leading to easier ranking schema. In particular, Hartmann (2013) discussed another

index for which he gives a heuristic and numeric data that explains that this index is closely

related to the rooted Shapley value. This index is called the fair proportion index of a, denoted

by FPτ (a), which is given by

FPτ (a) =
∑
e

λe
De

,

where the sum runs over all edges on the unique path from a to the root, λe is the weight of

edge e and De denotes the number of leaves below edge e. Notice that this index is much easier

to compute, which is the main reason why it is frequently used in biodiversity conservation

projects.

Fuchs and Jin (2015) tried to give a theoretical justification of the data in Hartmann’s paper.

However, they observed that

SV[r]
τ (a) = FPτ (a)

for all rooted phylogenetic trees τ and leaves a which deviates from the numerical data of

Hartmann. Because of this, Fuchs and Jin (2015) believed that Hartmann used another version

of the Shapley value. The authors then defined the modified rooted Shapley value which is given

by

S̃Vτ (a) =
1

n!

∑
|S|≥2,a∈S

(|S| − 1)!(n− |S|)!
(

PD[r]
τ (S)− PD[r]

τ (S \ {a})
)
.

Now, notice that the sum runs only over non-singletons which is quite natural since we are

taking the performance of a leaf in a group. For this Shapley value, Fuchs and Jin (2015) then

proved that for all weights equal to one and under the uniform and Yule-Harding model for τ ,

ρ(S̃Vn,FPn) −→ 1, as n −→∞,

where ρ denotes the correlation coefficient and S̃Vn and FPn are the random variables arising

from the modified rooted Shapley value and fair proportion index for a random rooted phyloge-

netic tree with n leaves that is generated by the uniform resp. Yule-Harding model and the leaf

is also chosen uniformly at random. The confusion about the data of Hartmann was resolved

through an email by Mike Steel who pointed out that Hartmann used the unrooted Shapley value

for his analysis.

To give now really a justification of the data of Hartmann, we tried to investigate the rela-

tionship between unrooted Shapley value and the fair proportion index. Our investigation led us
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to the main result of this section which shows that the two index are indeed highly correlated.

The result is stated as follows.

Theorem 11. Assume that a random phylogenetic tree with n taxa is generated by the β-

splitting model with β > −1 and choose a taxon uniformly at random. Then,

ρ(SV[u]
n ,FPn) −→ 1, as n −→∞,

where SV[u]
n resp. FPn denote the unrooted Shapley value resp. fair proportion index.

The outline of the proof is as follows. First, we observe that the main result follows directly

by showing that the variance of the difference of the unrooted Shapley value and the fair pro-

portion index tends to 0 (see Proposition 8). To obtain this convergence, moments of several

parameters of phylogenetic trees under the β-splitting model are derived in Section 2.1. These

parameters appear when the difference is studied in Section 2.2 and in the proof of the main

theorem which is given in Section 2.3.

Unfortunately, the method of the proof does not cover β ≤ −1 which includes the most

important case β = −1 along with the uniform model β = −3/2. One of the reasons behind

this is that the bounds rely on the asymptotic of qn(i) presented in Lemma 6. It is not clear

whether our main result can be extended to the case of β < −1 as the numerical data which

will be presented in Section 2.4 shows that the convergence slows down as β tends to −1.

2.1 Shape Parameters under the β-splitting model

As stated in the previous section, we will present different tree parameters that we found useful

in proving Theorem 2.3. One common aspect about these parameters is the fact that they depend

only on the shape of the tree. Thus, we can use the equivalence in Lemma 7 and may give a

left-right orientation of the subtrees of the phylogenetic trees. Now, fix a random phylogenetic

tree τ with all weights equal to 1 under the β-splitting model.

We start with the sum of all taxon-to-root distances which we denote by Sn. This parameter

is important in phylogenetics where it is called the Sackin index and is used as a measure of

imbalance of τ and also in computer science where it is called the total path length and used

as a complexity measure for algorithms on τ . From the definition of the β-splitting model, it is

clear that that Sn can be computed recursively as follows

Sn
d
= SIn + S∗n−In + n, (n ≥ 2) (2.3)

30



with S1 = 0, where the equality holds in distribution and In is the size of the left subtree (with

distribution P (In = i) = qn(i) for 1 ≤ i ≤ n − 1, see Section 1.4) and S∗n is an independent

copy of Sn. This follows from the fact that the Sackin index equals the sum of the Sackin

indices of left and right subtree with n counting the edge from the root to left resp. right subtree

for each leaf. In Figure 2.1, S5 can be computed recursively as S2 + S3 + 5 = 12 where S2 = 2

and S3 = 5.

Another shape parameter, which we will also need is the distance of a random taxon to

the root which we will denote by Dn. This parameter is called it the depth (this name is also

borrowed from computer science). Similarly as Sn, it can be computed recursively:

Dn|(In = j)
d
=

Dj + 1, with probability j/n;

Dn−j + 1, with probability (n− j)/n,
(n ≥ 2) (2.4)

with D1 = 0. The two cases in the bracket above correspond to the case where the chosen leaf

is in the left or right subtree, respectively, and the 1’s count the contribution of the left resp.

right edge that connect the root to the left resp. right subtree.

Finally, note that the fair proportion index FPn of a random taxon also allows a similar

recursive description:

FPn|(In = j)
d
=

FPj + 1/j, with probability j/n;

FPn−j + 1/(n− j), with probability (n− j)/n,
(n ≥ 2) (2.5)

with FP1 = 0. The terms 1/j and 1/(n− j) are again coming from the left resp. right edge that

connects the root with the left resp. right subtree.

As stated earlier, bounds for the moments for these parameters are needed to prove Theo-

rem 11. Note that, from (2.3), we have

E(Sn) = 2
n−1∑
j=1

qn(j)E(Sj) + n (n ≥ 2)

with E(S1) = 0. In general, it turns out that the moments for Sn satisfy a recurrence

an = 2
n−1∑
j=1

qn(j)aj + bn, (n ≥ 2) (2.6)

with a1 = 0 and bn is a given sequence. Similarly, forDn and FPn they will satisfy a recurrence

cn = 2
n−1∑
j=1

qn(j)
j

n
cj + dn, (n ≥ 2)
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with c1 = 0 and dn is again a given sequence. Setting an := ncn and bn := ndn shows that in

fact we only need to study the first recurrence.

The proof of the results in this section rely on the asymptotic of qn(j) in Lemma 6. Thus,

throughout this section, all of the results will have an additional assumption that β > −1.

We will prove two general results about a sequence an which satisfies (2.6). The first result

is a version of what computer scientists call a master theorem (see, e.g., Sokal and Rohlf (1962)

for similar results).

Proposition 5. Let an be sequence which satisfies (2.6) with

bn = O(nγ(log n)δ)

for non-negative integers γ and δ. Then, we have

(i) if γ = 1, then an = O(n(log n)δ+1);

(ii) if γ > 1, then an = O(nγ(log n)δ).

Proof. We first prove part (i). By assumption, we have that bn ≤ dn(log n)δ for some d > 0.

We will proceed by induction and therefore assume that ak ≤ ck(log k)δ+1 for 1 ≤ k < n with

a suitable constant c > 0 (which can be chosen such that this holds up to some fixed n).

First, notice that by Lemma 6,

2
n−1∑
j=1

qn(j)j(log j)δ+1 =
2Γ(2β + 2)

Γ(β + 1)2

1

n2β+1

n−1∑
j=1

jβ+1(n−j)β(log j)δ+1

(
1 +O

(
1

jε
+

1

(n− j)ε

))
.

(2.7)

Next, observe that

1

n2β+1

n−1∑
j=1

jβ+1(n− j)β(log j)δ+1

=
1

n2β+1

n−1∑
j=1

jβ+1(n− j)β(log n+ log(j/n))δ+1

= (log n)δ+1

n−1∑
j=1

(
j

n

)β+1(
1− j

n

)β
+ (δ + 1)(log n)δ

n−1∑
j=1

(
j

n

)β+1(
1− j

n

)β
log(j/n)

+O

(
(log n)δ−1

n−1∑
j=1

(
j

n

)β+1(
1− j

n

)β
(log(j/n))2

)
.
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From a standard application of the Euler-Maclaurin summation formula

n−1∑
j=1

(
j

n

)β+1(
1− j

n

)β
= n

∫ 1

0

xβ+1(1− x)βdx+O(n1−ε)

= n
Γ(β + 2)Γ(β + 1)

Γ(2β + 3)
+O(n1−ε)

and
n−1∑
j=1

(
j

n

)β+1(
1− j

n

)β
log(j/n) = n

∫ 1

0

xβ+1(1− x)β log(x)dx+O(n1−ε),

where ε > 0 is a suitable small constant. Moreover, by replacing the sum by an integral,

n−1∑
j=1

(
j

n

)β+1(
1− j

n

)β
(log(j/n))2 = O(n).

The error terms in (2.7) can be treated in a similar way (where ε > 0 has to be chosen small

enough such that the integral which is used to upper bound the sum is convergent).

Overall, by combining everything, we obtain that

2
n−1∑
j=1

qn(j)j(log j)δ+1 =
2Γ(2β + 2)

Γ(β + 1)2
· (β + 1)Γ(β + 1)2

(2β + 2)Γ(2β + 2)
n(log n)δ+1

+Kn(log n)δ + o(n(log n)δ)

= n(log n)δ+1 +Kn(log n)δ + o(n(log n)δ), (2.8)

where

K = (2δ + 2)
Γ(2β + 2)

Γ(β + 1)2

∫ 1

0

xβ+1(1− x)β log(x)dx.

In particular, note that K < 0.

Now, by plugging the assumption and the induction hypothesis into (2.6) and using (2.8),

an ≤ 2c
n−1∑
j=1

qn(j)j(log j)δ+1 + dn(log n)δ

≤ cn(log n)δ+1 + cKn(log n)δ + cεn(log n)δ + dn(log n)δ

≤ cn(log n)δ+1,

where ε > 0 is a sufficiently small constant (coming from the o-term in (2.8)) and the last step

holds by choosing c such that c ≥ −d/(K + ε) (which is possible since K < 0).

For the proof of part (ii), we proceed similarly. First, similar as above,

2
n−1∑
j=1

qn(j)jγ(log j)δ = Knγ(log n)δ + o(nγ(log n)δ)
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with

K =
2Γ(2β + 2)Γ(β + γ + 1)

Γ(β + 1)Γ(2β + γ + 2)
=

γ∏
`=2

β + `

2β + 1 + `
,

where in the last step we used that Γ(z + 1) = zΓ(z). Since β > −1, the above product

representation shows that 0 < K < 1. Thus, again by the induction hypothesis,

an ≤ 2c
n−1∑
j=1

qn(j)jγ(log j)δ + dnγ(log n)δ

≤ cKnγ(log n)δ + cεnγ(log n)δ + dnγ(log n)δ

≤ cnγ(log n)δ,

where ε > 0 is as in part (i) and the last step follows by choosing c such that c ≥ d/(1 −

K − ε) (which is possible since K < 1). This concludes the proof of part (ii) and thus also the

proposition.

As a consequence, we obtain the following bounds which will be needed in the proof of

Theorem 11 (the bounds for the mean also follows from the results by Aldous (1996)).

Corollary 2. For the Sackin index Sn under the β-splitting model, we have

E(Sn) = O(n log n) and E(S2
n) = O(n2(log n)2).

Proof. In order to prove this, we need to derive the recurrences satisfied by the mean and the

second moment of Sn. To this end, we use the moment-generating function:

Pn(u) := E
(
eSnu

)
.

Then, from (2.3),

Pn(u) =
n−1∑
j=1

qn(j)Pj(u)Pn−j(u)enu, (n ≥ 2)

with P1(u) = 1.

Taking the derivative with respect to u and setting u = 0, then gives

E(Sn) = 2
n−1∑
j=1

qn(j)E(Sj) + n, (n ≥ 2)

with E(S1) = 0. This is (2.6) with bn = n. Thus, from Proposition 5, we obtain that E(Sn) =

O(n log n) as claimed.
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For the second moment, we take the second derivative with respect to u and again set u = 0.

Then, we see that the second moment also satisfies (2.6) with

bn = n2 + 2
n−1∑
j=1

qn(j)E(Sj)E(Sn−j) + 4n
n−1∑
j=1

qn(j)E(Sj)

= O(n2(log n)2),

where the last estimate follows from that for the mean. Thus, again by Proposition 5, we obtain

that E(S2
n) = O(n2(log n)2) which concludes the proof.

Corollary 3. For the depth Dn under the β-splitting model, we have

E(Dn) = O(log n) and E(D2
n) = O((log n)2).

Proof. First by the additivity of the expected value, we have

E(Sn) = nE(Dn)

and thus the claimed bound for the mean of the depth follows from that of the mean of the

Sackin index which was obtained in the corollary above.

As for the second moment, we again use a moment-generating function:

Pn(u) := E
(
eDnu

)
.

Then, from (2.4), we obtain that

Pn(u) = 2eu
n−1∑
j=1

j

n
qn(j)Pj(u), (n ≥ 2)

with P1(u) = 1. Taking the second derivative with respect to u and setting u = 0 shows that

nE(D2
n) satisfies (2.6) with

bn = n+ 4
n−1∑
j=1

qn(j)jE(Dj) = O(n log n).

Thus, Proposition 5 implies that nE(D2
n) = O(n(log n)2) from which the claimed result fol-

lows.

We also need a lower bound result on an satisfying (2.6). The next proposition provides

such a result by showing that if bn is non-negative, then either an ≡ 0 for all n or otherwise it

grows at least linearly.
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Proposition 6. Let an be a sequence which satisfies (2.6) with bn non-negative and bn0 > 0 for

at least one n0. Then,

an = Ω(n).

Proof. Let n0 be the smallest positive integer such that bn0 > 0. Define

b̃n =

0, if 1 ≤ n ≤ n0;

bn + 2qn(n0)bn0 , if n ≥ n0 + 1

and denote by ãn the corresponding sequence which satisfies (2.6). Then, clearly an ≥ ãn and

thus it suffices to show that the claim holds for ãn. Also, note that

b̃n ≥ 2qn(n0)bn0 ≥
K1

nβ+1
, (n ≥ n0 + 1) (2.9)

for some suitable constant K1 > 0 (this follows with similar arguments as in Lemma 6).

Now, we claim that

ãn ≥ cn, (n ≥ n0 + 1)

with a suitable constant c > 0. We will prove this claim by induction where we can safely

assume that it holds for sufficiently large n by a suitable choice of c. Plugging now the induction

hypothesis into (2.6) gives for n sufficiently large:

ãn ≥ 2c
n−1∑
j=1

qn(j)j − 2c

n0∑
j=1

qn(j)j +
K1

nβ+1

≥ cn− cK2

nβ+1
+

K1

nβ+1
,

where we used:

2
n−1∑
j=1

qn(j)j = n

and

2

n0∑
j=1

qn(j)j ≤ K2

nβ+1

which is proved as (2.9). Finally, choosing 0 < c ≤ K1/K2 gives ãn ≥ cn which shows the

claim.

From this we obtain the following lower bound for the variance of the fair proportion index

which will also be needed in the proof of Theorem 11.

Corollary 4. For the fair proportion index FPn under the β-splitting model, we have

Var(FPn) = Ω(1).

36



Proof. First observe that it was proved by Fuchs and Jin (2015) that

E(FPn) = 2− 2

n

which follows immediately from the (deterministic) identity∑
a

FPτ (a) = 2n− 2,

where the sum runs over all leaves of a phylogenetic tree τ .

In order to find a recurrence for the variance of FPn, we use the moment-generating func-

tion:

Pn(u) := E
(
e(FPn−E(FPn))u

)
which by (2.5) satisfies the recurrence

Pn(u) = 2
n−1∑
j=1

j

n
qn(j)Pj(u)e∆n,ju, (n ≥ 2)

with P1(u) = 1, where ∆n,j is defined as

∆n,j =
1

j
− E(FPn) + E(FPj) =

2

n
− 1

j
.

Taking the second derivative with respect to u and setting u = 0 gives

Var(FPn) = 2
n−1∑
j=1

j

n
qn(j)Var(FPj) + 2

n−1∑
j=1

j

n
qn(j)∆2

n,j.

Thus, nVar(FPn) satisfies (2.6) with

bn = 2
n−1∑
j=1

jqn(j)∆2
n,j

which satisfies the assumptions from the Proposition 18. Consequently, nVar(FPn) = Ω(n)

which is the claimed result.

2.2 Difference between Unrooted and Rooted Shapley Value

As stated earlier, Theorem 11 will be a direct consequence of the variance of unrooted Shapley

value and fair proportion index tending to 0. Because of the equality of the rooted Shapley value

and the fair proportion index, and the two indices possess an almost similar “shape”, we instead

consider the difference between the unrooted and rooted Shaply values.
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Before stating our result, we need to describe the following notations. First, we fix a phy-

logenetic tree τ . Let τ` and τr denote left and right subtree of the root of τ , respectively. Also,

let a be a fixed leaf and assume w.l.o.g. that a ∈ τ`. For a set of leaves S, we consider the least

common ancestor of S which is the least common ancestor of S under the order induced by τ

where the root is the largest element. In Figure 1.4, the least common ancestor of {a, b, c} is the

node labelled 2. Define

X [i]
τ := sum of all least common ancestor to root distances for all sets S of leaves of size i

and

Y [i]
τ (a) :=sum of all distances between the least common ancestors of S and S ∪ {a}

for all sets S of leaves of size i.

The parameter X [i]
τ is related to the cophenetic value; see (Sokal and Rohlf, 1962).

Proposition 7. For the difference between unrooted and rooted Shapley value, we have

SV
[u]
T (a)− SV[r]

τ (a) =− 1

n
Dτ (a) +

1

n!

|τr|∑
i=1

i!(n− i− 1)!

(
X [i]
τr +

(
|τr|
i

))

+
1

n!

|τ`|−1∑
i=1

i!(n− i− 1)!Y [i]
τ`

(a), (2.10)

where Dτ (a) is the distance of a to the root.

Proof. In order to prove the result, we have to compare the difference of PD[u]
τ (S)− PD[u]

τ (S \

{a}) and PD[r]
τ (S) − PD[r]

τ (S \ {a}) for all sets S of leaves with a ∈ S. Fix such a set S and

assume that S = {a} ∪ S` ∪ Sr where S` are all the leaves of S except a from τ` and Sr are all

the leaves of S from τr. We have to distinguish between four cases.

• Case 1: S` 6= ∅ and Sr 6= ∅.

In this case, we have

PD[u]
τ (S)− PD[u]

τ (S \ {a}) = PD[r]
τ (S)− PD[r]

τ (S \ {a})

since the smallest spanning tree of S and S \ {a} both contain the root. Thus, the contri-

bution of this case to the difference of the two Shapley values is zero.
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• Case 2: S` = Sr = ∅.

In this case, we have

PD[u]
τ (S)− PD[u]

τ (S \ {a}) = 0

and

PD[r]
τ (S)− PD[r]

τ (S \ {a}) = Dτ (a)

which gives the first term on the right hand side of (2.10).

• Case 3: S` = ∅ and Sr 6= ∅.

Assume that Sr has size i and least common ancestor cr. Then, PD[u]
τ (S)−PD[u]

τ (S\{a})

and PD[r]
τ (S) − PD[r]

τ (S \ {a}) are explained in Figure 2.2. Moreover, the difference is

explained on the left of Figure 2.4. Overall, by summing over all sets of size i, we obtain

the second term on the right hand side of (2.10). Note that the term
(|τr|
i

)
comes from the

contribution of the edge from to the root to the right subtree of τ .

• Case 4: S` 6= ∅ and Sr = ∅.

Assume that S` has size i and least common ancestor c`. Moreover, denote the least

common ancestor of {a}∪S` by c (note that c = c` might be possible). Then, PD[u]
τ (S)−

PD[u]
τ (S \{a}) and PD[r]

τ (S)−PD[r]
τ (S \{a}) are explained in Figure 2.3. Moreover, the

difference is explained on the right of Figure 2.4. Overall, by summing over all sets of

size i and noting that sets S` which contain a do not contribute to Y [i]
τ` (a), we obtain the

final term on the right hand side of (2.10).

Combining all four cases concludes the proof.

Our result for the difference has to be compared with that from the recent work by Stahn,

see (Stahn, 2020), which was useful from a linear algebra poit of view. Our expression, on the

other hand, is of combinatorial nature and useful from a computational point of view as will be

explained next.

Note that similar to (2.4), we have the following recurrence for Dτ (a):

Dτ (a) =

Dτ`(a) + 1, if a ∈ τ`;

Dτr(a) + 1, if a ∈ τr

Moreover, we have also similar recurrences for X [i]
τ and Y [i]

τ (a), namely,

X [i]
τ = X [i]

τ`
+X [i]

τr +

(
|τ`|
i

)
+

(
|τr|
i

)
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a Sr

crτ` τr

PD[u]
τ (S)

a Sr

crτ` τr

PD[u]
τ (S \ {a})

a Sr

crτ` τr

PD[u]
τ (S)− PD[u]

τ (S \ {a})

a Sr

crτ` τr

PD[r]
τ (S)

a Sr

crτ` τr

PD[r]
τ (S \ {a})

a Sr

crτ` τr

PD[r]
τ (S)− PD[r]

τ (S \ {a})

Figure 2.2: Explanation of PD[?]
τ (S)− PD[?]

τ (S \ {a}) for Case 3 in the proof of Proposition 7

where ? = u (first row) or ? = r (second row). The bold parts in the trees visualize the subtree

of relevance for the computation of the quantity below the tree.

S`a

c`

cτ`

τr

PD[u]
τ (S)

S`a

c`

cτ`

τr

PD[u]
τ (S \ {a})

S`a

c`

cτ`

τr

PD[u]
τ (S)− PD[u]

τ (S \ {a})

S`a

c`

cτ`

τr

PD[r]
τ (S)

S`a

c`

cτ`

τr

PD[r]
τ (S \ {a})

S`a

c`

cτ`

τr

PD[r]
τ (S)− PD[r]

τ (S \ {a})

Figure 2.3: Explanation of PD[?]
τ (S)− PD[?]

τ (S \ {a}) for Case 4 in the proof of Proposition 7

where ? = u (first row) or ? = r (second row). The bold parts in the trees visualize the subtree

of relevance for the computation of the quantity below the tree.
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a Sr

crτ` τr

X
[i]
τr

S`a

c`

c
τ`

τr

Y
[i]
τ` (a)

Figure 2.4: The contributions of Case 3 (left) and Case 4 (right) to the expression (2.10).

with X [i]
τ = 0 for all τ with |τ | ≤ i and

Y [i]
τ (a) =


Y [i]
τ`

(a) +X [i]
τr +

(
|τr|
i

)
, if a ∈ τ`;

Y [i]
τr (a) +X [i]

τ`
+

(
|τ`|
i

)
, if a ∈ τr

with Y [i]
τ (a) = 0 for all τ with |τ | ≤ i. Here, note that in both cases, we only have to consider

sets of leaves which are either completely contained in the left or right subtree because all other

sets of leaves do not contribute to X [i]
τ and Y [i]

τ (a). Moreover, again in both cases, the binomial

coefficients count the contribution of the edge connecting the root to the left and/or right right

subtree.

These recurrences together with the above proposition lead to a (reasonable fast) recursive

method of computing SV[u]
τ (a). In particular, this method is faster than doing the computation

directly from the definition of SV[u]
τ (a). We will use it in order to produce some numerical

results in Section 2.4.

2.3 Proof of Theorem 11

In this section, we will prove our main result, namely, that the correlation coefficient of unrooted

Shapley value and fair proportion index tends to one. We will start by reducing this task to one

which involves the difference between these two indices.

Proposition 8. If

Var(SV[u]
n − FPn) = o(1),

then

ρ(SV[u]
n ,FPn) ∼ 1.
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Proof. First consider

Cov(SV[u]
n ,FPn) = Cov(SV[u]

n − FPn + FPn,FPn)

= Cov(SV[u]
n − FPn,FPn) + Var(FPn). (2.11)

Note that the first term in (2.11) can be bounded by Cauchy-Schwartz inequality as

Cov(SV[u]
n − FPn,FPn) ≤

√
Var(SV[u]

n − FPn) · Var(FPn). (2.12)

Also, recall that from Corollary 4,

Var(FPn) ≥ c,

where c is a suitable positive constant. Thus, from this, (2.11), (2.12) and the assumption, we

obtain that

Cov(SV[u]
n ,FPn) = Var(FPn)(1 + o(1)). (2.13)

Next, consider

Var(SV[u]
n ) = Cov(SV[u]

n , SV[u]
n )

= Cov(SV[u]
n − FPn + FPn, SV[u]

n − FPn + FPn)

= Var(SV[u]
n − FPn) + 2Cov(SV[u]

n − FPn,FPn) + Var(FPn).

Then, by a similar line of reasoning as above

Var(SV[u]
n ) = Var(FPn)(1 + o(1)). (2.14)

Finally, by combining (2.13) and (2.14), we have

ρ(SV[u]
n ,FPn) =

Cov(SV[u]
n ,FPn)√

Var(SV[u]
n ) ·

√
Var(FPn)

=
Var(FPn)(1 + o(1))√

Var(FPn)(1 + o(1))
√

Var(FPn)
= 1 + o(1)

which is the claimed result.

From the previous proposition, it is indeed sufficient to show that the variance of the differ-

ence goes to 0. In order to show this, we need the following simple inequality for conditional

expectations.

Lemma 8. Let U be a discrete random variable and R1, . . . , Rk be random variables. Then,

E

( k∑
i=1

Ri

)2

|U

 ≤ ( k∑
i=1

√
E(R2

i |U)

)2

.
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Proof. This is an easy consequence of the Cauchy-Schwartz inequality for conditional expec-

tations:

E

( k∑
i=1

Ri

)2

|U

 =
k∑

i,j=1

E(RiRj|U)

≤
k∑

i,j=1

√
E(R2

i |U)
√
E(R2

j |U)

=

(
k∑
i=1

√
E(R2

i |U)

)2

.

This proves the claim.

Next, we will simplify the condition of Proposition 8 once more.

We first need some notations. Let the three terms on the right hand side of (2.10) for a

random phylogenetic tree of size n under the β-splitting model with β > −1 and a random taxon

a be Z [1]
n , Z

[2]
n and Z [3]

n . Note that Proposition 7 actually gives conditional random variables:

Z [1]
n |(Yn = (j, left)) = −Dj + 1

n
;

Z [2]
n |(Yn = (j, left)) =

1

n!

n−j∑
i=1

i!(n− i− 1)!

(
X

[i]
n−j +

(
n− j
i

))
;

Z [3]
n |(Yn = (j, left)) =

1

n!

j−1∑
i=1

i!(n− i− 1)!Y
[i]
j ,

whereDn is the depth (see Section 2.1) andX [i]
n and Y [i]

n denote the random versions ofX [i]
τ and

Y
[i]
τ (a). Note that we have replaced Dn by Dj + 1 since the random taxon is in the left subtree

which has size j; compare with (2.4).

The Yn in the expressions above is a random vector with values (j, x) where 1 ≤ j ≤ n− 1

and x ∈ {left, right}. Here, j is the size of the left subtree and x gives the location of a. Note

that

P(Yn = (j, left)) = qn(j)
j

n
(2.15)

and we have a similar expression if x = left is replaced by x = right (also for the Z [`]
n ’s above

we have similar expressions in that case).

With these notations, we have the following proposition.

Proposition 9. If

E(E((Z [`]
n )2|Yn)) = o(1) for ` = 1, 2, 3
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then

Var(SV[u]
n − FPn) = o(1).

Proof. First, note that

Var(SV[u]
n − FPn) ≤ E(SV[u]

n − FPn)2

= E(Z [1]
n + Z [2]

n + Z [3]
n )2

= E(E((Z [1]
n + Z [2]

n + Z [3]
n )2|Yn)).

Applying Lemma 8 twice gives

Var(SV[u]
n − FPn) ≤ E

(
3∑
`=1

√
E((Z

[`]
n )2|Yn)

)2

≤

(
3∑
`=1

√
E(E((Z

[`]
n )2|Yn))

)2

.

From this the claim follows.

The hypothesis for ` = 1 in this proposition is easy to check.

Proposition 10. The following bound holds:

E(E((Z [1]
n )2|Yn)) = O

(
(log n)2

n2

)
.

Proof. First,

E((Z [1]
n )2|Yn = (j, left)) =

E(D2
j ) + 2E(Dj) + 1

n2
.

Next, by Corollary 3,

E(Dn) = O(log n) and E(D2
n) = O((log n)2).

Thus,

E((Z [1]
n )2|Yn = (j, left)) = O

(
(log j)2 + 1

n2

)
.

A similar expression holds if x = left is replaced by x = right. Finally, from (2.15),

E(E((Z [1]
n )2|Yn)) = O

(
n−1∑
j=1

jqn(j)
(log j)2 + 1

n3

)
= O

(
(log n)2

n2

)

as claimed.
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The other two conditions of Proposition 9 are slightly harder to prove. First, we need the

following identity which is certainly well-known and can also be verified with, e.g., Maple.

However, for the sake of simplicity, we give an easy, elementary, and self-contained proof.

Lemma 9. The following identity holds:

n−j∑
i=1

(
n−j
i

)
(i+ 1)

(
n
i+1

) =
n− j
nj

.

Proof. First, by the beta integral,

1(
n
i+1

) = (n+ 1)

∫ 1

0

ti+1(1− t)n−i−1dt.

Then, the above sum becomes

n−j∑
i=1

(
n−j
i

)
(i+ 1)

(
n
i+1

) = (n+ 1)

∫ 1

0

n−j∑
i=1

(
n−j
i

)
i+ 1

ti+1(1− t)n−i−1dt.

The sum inside can be simplified as

n−j∑
i=1

(
n−j
i

)
i+ 1

ti+1(1− t)n−i−1 =

∫ t

0

n−j∑
i=1

(
n− j
i

)
ui(1− t)n−i−1du

= (1− t)j−1

∫ t

0

n−j∑
i=1

(
n− j
i

)
ui(1− t)n−j−idu

= (1− t)j−1

∫ t

0

(
(u+ 1− t)n−j − (1− t)n−j

)
du

=
(1− t)j−1

n− j + 1
− (1− t)n

n− j + 1
− (1− t)n−1t.

Plugging this into the integral above, we obtain that

n−j∑
i=1

(
n−j
i

)
(i+ 1)

(
n
i+1

) = (n+ 1)

∫ 1

0

(
(1− t)j−1

n− j + 1
− (1− t)n

n− j + 1
− (1− t)n−1t

)
dt

= (n+ 1)

(
1

(n− j + 1)j
− 1

(n− j + 1)(n+ 1)
− 1

n
+

1

n+ 1

)
= (n+ 1)

n− j
(n+ 1)nj

=
n− j
nj

.

This is the desired result.

Now, we can verify the other two conditions from Proposition 9 which then completes the

proof of Theorem 11.
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Proposition 11. The following bounds hold:

E(E((Z [2]
n )2|Yn)) =


O
(

(log n)2

nmin{β+2,2}

)
, if β 6= 0;

O
(

(log n)3

n2

)
, if β = 0

and

E(E((Z [3]
n )2|Yn)) =


O
(

(log n)2

nmin{β+1,2}

)
, if β 6= 1;

O
(

(log n)3

n2

)
, if β = 1.

Proof. We start with Z [2]
n . First note that

E((Z [2]
n )2|Yn = (j, left)) =

1

n!2
E

(
n−j∑
i=1

i!(n− i− 1)!

(
X

[i]
n−j +

(
n− j
i

)))2

≤ 1

n!2

n−j∑
i=1

i!(n− i− 1)!

√
E
(
X

[i]
n−j +

(
n− j
i

))2
2

, (2.16)

where in the last step we used Lemma 8. What is under the square-root can be written as

E
(
X

[i]
n−j +

(
n− j
i

))2

= E(X
[i]
n−j)

2 + 2

(
n− j
i

)
E(X

[i]
n−j) +

(
n− j
i

)2

. (2.17)

In order to go on, we need the following bound for X [i]
n :

X [i]
n ≤

1

i

(
n− 1

i− 1

)
Sn, (2.18)

where Sn is the Sackin index from Section 2.1. This upper bound is explained as follows: every

leaf is contained in
(
n−1
i−1

)
subsets of leaves of size i. Thus,(

n− 1

i− 1

)
Sn (2.19)

is the sum of taxon-to-root distances for all taxa in all subsets of taxa of size i. Since X [i]
n is the

sum of the distance from the least common ancestor to the root of all subsets of taxa of size i,

obviously 1/i-th of (2.19) is at least as large as X [i]
n .

Now, plugging (2.18) into (2.17) and using that

E(Sn) = O(n log n) and E(S2
n) = O(n2(log n)2),

which was obtained in Corollary 2, we have

E
(
X

[i]
n−j +

(
n− j
i

))2

= O

((
n− j
i

)2

(log n)2

)
.
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Plugging this in turn into (2.16) gives

E((Z [2]
n )2|Yn = (j, left)) = O

(log n)2

(
n−j∑
i=1

(
n−j
i

)
(i+ 1)

(
n
i+1

))2
 = O

(
(n− j)2(log n)2

n2j2

)
,

where in the last step we used Lemma 9. A similar expression holds if x = left is replaced by

x = right.

Finally, using (2.15) gives

E(E((Z [2]
n )2|Yn)) = O

(
(log n)2

n−1∑
j=1

qn(j)
(n− j)2

n3j

)

= O

(
n−2β−4(log n)2

n−1∑
j=1

jβ−1(n− j)β+2

)
,

where in the last step we used Lemma 6. From this the claimed result follows from the bounds

n−1∑
j=1

jβ−1(n− j)β+2 =


O(nβ+2), if β < 0;

O(n2 log n), if β = 0;

O(n2β+2), if β > 0.

Next, for Z [3]
n , the same method as above can be used since it trivially holds that

Y [i]
n ≤ X [i]

n .

In particular, we obtain that

E((Z [3]
n )2|Yn = (j, left)) = O

(
j2(log n)2

n2(n− j)2

)
and a similar result holds if x = left is replaced by x = right.

Thus, again by (2.15), we have

E(E((Z [3]
n )2|Yn)) = O

(
(log n)2

n−1∑
j=1

qn(j)
j3

n3(n− j)2

)

= O

(
n−2β−4(log n)2

n−1∑
j=1

jβ+3(n− j)β−2

)
from which the claim follows by the bounds

n−1∑
j=1

jβ+3(n− j)β−2 =


O(nβ+3), if β < 1;

O(n4 log n), if β = 1;

O(n2β+2), if β > 1.

This concludes the proof.
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2.4 Numerical Data

In this section, we present some numerical data to illustrate Theorem 11. For this data, we used

the splitting probabilities (1.15) to generate a random phylogenetic tree. Then, we picked a leaf

uniformly at random from all taxa and computed the corresponding pair of unrooted Shapley

value and fair proportion index. This was repeated five hundred times for each fixed choice of

β and n. As for β, we chose β = 0 (Yule-Harding model), β = −1/2 and β = −1; for n, we

chose 40, 80 and 160.

The computation of the unrooted Shapley value and fair proportion index was done recur-

sively as outlined in Section 2.2. The recursions for FPT (a) and DT (a), X
[i]
T and Y [i]

T (a) yield a

sufficiently fast method for doing the computation. Our results can be found in Figure 2.5 and

the code is available at

https://github.com/arpaningbatan/ShapleyValue.

Note that the case β = −1 is not covered by Theorem 11. Indeed, one sees that whereas

the convergence of the data to the line y = x is very good for β = 0, it seems to slow down

if β = −1/2 and β = −1. In fact, this is in accordance with the proof method of Theorem 11

from the previous section which also gives a bound of the speed of convergence to 1. This

bound is dominated by the second bound in Proposition 11 which gets worse as β approaches

−1. However, our bound might be too conservative and it might be the case that the correlation

also converges to 1 when β = −1. (Figure 2.5 seems to suggest that concentration on the line

y = x also takes place in this case.)

Also, note that points with small fair proportion index tend to be above the line y = x

whereas points with large fair proportion index tend to be below the line y = x. This is ex-

plained by (2.10) since the only negative term on the right hand side is also small in the former

case and large in the latter case.
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Figure 2.5: Numerical data for β = 0 (Yule-Harding model), β = −1/2 and β = −1.
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Chapter 3

Animal Grouping

Group formation is a natural process in an ecosystem which can easily be seen in packs of social

animals. Many studies suggest that kinship plays a vital role in the group formation process.

Others suggest that organisms form groups to acquire benefits in the group such as hunting of

predators, group protection from herds, preservation of hereditary traits, etc. Understanding the

behaviours of animals and finding the reasons why the group formation process takes place are

some of the problems being studied by biologist. Many models have been proposed to emulate

group formation processes such as game theoretic models, aggregation and splitting models and

kin-selection processes; see (Durand et al., 2007) for a detailed discussion.

In (Durand et al., 2007), the authors proposed a model in which group formation is based

on the genetic relatedness of animals. This model is called the neutral model because of the use

of neutral gene trees, which in our case are the phylogenetic trees from Section 1.1, to represent

genetic relatedness of organisms. In this model, the individuals must satisfy the following

conditions to form a group:

1. Each group must have more than one member.

2. Each individual must be grouped to its nearest kin.

The first condition is a natural condition since we are trying to form a group. Meanwhile, the

second condition takes care of the genetic relatedness in the group formation process. The

minimal groups satisfying the two conditions are called the minimal clades or the clades of the

phylogenetic tree. In Figure 3.1A, {a, b} can form a group but they are the nearest kin of c and

cannot form a group by themselves. Therefore, {a, b, c} forms a clade. Notice that the group

{f, g, h, i} satisfies both conditions but it is not minimal. Thus, it is not a clade. The clades in
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Figure 3.1A are {a, b, c}, {f, g} and {h, i}.

A

a b c f g h i

1 1 1

1 2

3 B

a b c f g h i

1 1 1

1 1

2

Figure 3.1: Recursive computation of the number of clades of a phylogenetic tree which rep-

resents the genetic relationship between 7 animals {a, b, c, f, g, h, i}. Extra-clustering event

occurs at the red node in Figure B.

Due to the difficulty in constructing the accurate phylogenetic tree relationhip between ani-

mals, we may again consider the random tree models discussed in Section 1.4. Many parameters

such as number of clades and clade spectrum under the Yule-Harding model have been stud-

ied; see (Durand and François, 2010; Drmota et al., 2014, 2016). The authors mainly used the

distributional recurrence (see Section 2.1) of these parameters to derive the limit distributions.

In contrast to their method, we will be using the combinatorial properties of the trees to derive

their limit distributions. Thus, our study will focus on the uniform model on phylogenetic trees

rather than the Yule-Harding model.

The following parameters will be of our interest in this section. First, we will again take

another look at the number of clades and the number of clades of size m which we will denote

by Nn and N
[m]
n , respectively. In Figure 3.1A, the values of these parameters are N7 = 3,

N
[2]
7 = 2, N [3]

7 = 1, N [4]
7 = N

[5]
7 = N

[6]
7 = N

[7]
7 = 0. In passing, we will observe that

the number of groups is very small. This leads us to assume that there must be a clade with

large size. Thus, we also consider the size of the largest clade which we denote by Mn. In

Figure 3.1A, we have M7 = 3. Notice that these parameters are dependent only on the shape of

the tree and thus, by exploiting Lemma 1, we may consider the plane binary trees instead of the

phylogenetic trees.

The neutral model relies only on the genetic relatedness of animals for group formation.

This may be true for some classes of social animals but not for all, see (Durand et al., 2007) for

real-world statistical data. In order to take into account other events that lead to the formation

of groups, the authors in (Durand et al., 2007) introduced a parameter p, called the clustering
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rate, which gives a probability of group formation in every splitting event in the plane binary

tree; compare with the recursive way the uniform model arises from the β-splitting model of

Section 1.4. Thus, in case that such an event occurs, all animals under that event form a group.

This more general model is called the extra-clustering model. Note that the neutral model is

a particular case of the extra-clustering model which can be obtained by taking p = 0. In

Figure 3.1B, an extra-clustering event happens at the red node. Then, we have N7 = 2, N [2]
7 =

N
[5]
7 = N

[6]
7 = N

[7]
7 = 0, N [3]

7 = 1, N [4]
7 = 1 andM7 = 4. The case p = 1 will not be considered

in this thesis since the results under this case are trivial. The only possibility in this case is that

all animals are grouped together in a single clade.

The remainder of the chapter is organized as follows. In the next section, we will introduce

the cluster trees and two important generating functions that are associated with it. The proofs

of the results in this Chapter will heavily rely on these generating functions. Next, the limit

distribution of Nn and N [m]
n will be derived in Section 3.2. Finally, in Section 3.3 we will derive

for the moments and limit distribution of Mn.

3.1 Cluster Trees and Weights

First, note that the definition of the extra-clustering model can be broken into two probabilistic

stages:

1. a plane binary tree of size n is picked uniformly at random and

2. the picked tree is traced (starting from the root and then recursively in the subtrees) and

one stops if either a node is encountered whose left or right subtree is a leaf (parent of the

leaves under the same clade) or an extra-clustering event has occurred.

In the second step, we replace the subtrees at the places where one has stopped by leaves. The

resulting tree is called a cluster tree of the picked tree. Note that cluster trees are again plane

binary trees and the leaves of the cluster tree corresponds to the clades in the extra-clustering

process. Moreover, note that they are not unique but rather depend on the outcome of the

probabilistic procedure in the extra clustering process, see Figure 3.2. Figure 3.2B happens

when there is no extra clustering in the root and the tracing stops at the red internal nodes of

the original tree with probability pq2 + 2p2q+ q3 (with probability pq2 if extra-clustering events

occured at both red internal nodes, twice p2q if an extra-clustering event occured at exactly one
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A B C

qp2 + 2q2p+ q3

p

Figure 3.2: Plane binary tree of size 5 together with all its possible cluster trees in B and C with

corresponding probabilities.

of the grey internal nodes, or q3 if no extra-clustering event occured at red internal nodes). On

the other hand, Figure 3.2C happens only when there is an extra-clustering event in the root

with probability p.

Now, in order to keep track of the probabilities attached to cluster trees, we associate two

generating functions with them. First, since no extra-clustering event has occurred at any inter-

nal node of a cluster tree, we attach the probability q := 1− p to these nodes, i.e., we consider

G(z) :=
∑
n≥1

qn−1Cn−1z
n = zC(qz),

where C(z) is the generating function of the Catalan numbers. Next, for the leaves of the cluster

tree, they either resulted from one of the following:

1. an extra-clustering event occurred at the leaf,

2. exactly one of its children is a leaf, or

3. both of its children are leaves.

In the first case, we attach a weight p and note that there are Cn−1 such possible trees. Next, in

the second case, we attach a weight q and there are Cn−2 possible trees because either the left

or right subtree is a leaf. Finally, in the last case, we attach a weight q and there is only one

possible tree. Thus, for each single leaf of the cluster tree, we consider the generating function

H(z) : = (pC1 + q)z2 +
∑
n≥3

(pCn−1 + 2qCn−2)zn

= z2 + pz(C(z)− 1− z) + 2qz2(C(z)− 1).

Note that the composition of these two generating functions, namely G(H(z)), generates

for any plane binary trees all its associated cluster trees with their corresponding probabilities.
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In particular, since for each plane binary tree the probabilities of its cluster trees sum up to 1,

we have

[zn]G(H(z)) = Cn−1, (n ≥ 2)

and [z1]G(H(z)) = 0 because all plane binary trees have at least two leaves. We formulate this

as a lemma.

Lemma 10. For all 0 ≤ p < 1, we have G(H(z)) = z(C(z)− 1).

The case p = 1 is trivial since we have a clustering at the root

3.2 Number of Clades and Number of Fixed-size Clades

We now consider the parameter Nn. We first track the number of leaves of the cluster trees

by marking each occurrence of H(z) by a variable u. Then, we have a composition schema

G(uH(z)). From the discussions in Section 1.3, the distribution of Nn is given by

P(Nn = k) =
[ukzn]G(uH(z))

Cn−1

.

Using the notations from Theorem 10, note that

ρH =
1

4
, ρG =

1

4q
and τH =

3 + p

16
, τG =

1

2q
.

Moreover, the subcritical condition is satisfied since

τH =
3 + p

16
<

1

4
≤ 1

4q
= ρG.

In addition, H(z) has expansion about ρH = 1/4 which is given by

H(z) =
3 + p

16
− 1 + p

4

√
1− 4z + o(

√
1− 4z)

in a suitable ∆-domain. Thus, we can apply Theorem 10 from Section 1.3 to obtain the follow-

ing result.

Theorem 12. We have the limit distribution result

Nn
d−→ N

with convergence of all moments, where

N
d
= NB

(
1

2
,
3− 2p− p2

4

)
+ 1.

Here, NB(r, p) denotes the negative binomial distribution.

55



Proof. By applying Theorem 10, we obtain the claimed result with the probability generating

function of N given by

PN(u) = u

√
1− 4qτH

1− 4qτHu
.

Moreover, by the above form of the probability generating function of N , it is clear that N has

the claimed distribution.

Remark 1. NB(r, p) in the above theorem is more precisely the (standard) generalization of the

negative binomial distribution to the case where the first parameter is allowed to be any positive

real number. The mean of such distribution is given by

µ =
pr

1− p
and probability generating function

PNB(r,p)(z) =

(
1− p
1− pz

)r
.

As a direct consequence, we have the following corollary.

Corollary 5. We have,

E(Nn) ∼ 5 + 2p+ p2

2 + 4p+ 2p2
.

Thus, on average, there are only a finite number of groups.

Now, we consider the number of clades with fixed-size. We fix m ≥ 2 and consider the

number of clades of size m which we denoted by N
[m]
n . We again use the two generating

functions G(z) and H(z) to study this parameter. In this case, we only mark with the variable

u those leaves of the cluster tree which corresponds to the groups of size m, that is, only the

coefficient of zm. Note that [zm]H(z) is given by

pCm−1 + (2− δ2,m)qCm−2

were δ2,m is the Kronecker delta function. Thus, by marking the m-th coefficient of H(z) by u,

we have

G((pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z)).

Then,

P(N [m]
n = k) =

[ukzn]G((pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z))

Cn−1

.

Unfortunately, we can not apply Theorem 10 directly since the function is not of the form

G(uH(z). However, the method of proof of Theorem 10 can be applied and yields the following

result.
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Theorem 13. We have the limit distribution result

N [m]
n

d−→ N [m]

with convergence of all moments, where

N [m] d
= NB

(
1

2
,

42−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

1 + 2p+ p2 + 42−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

)
.

Proof. Let

Hm(u, z) = (pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z)

which has dominant singularity at z = 1/4. By a straightforward expansion, as z → 1/4,

Hm(u, z) = cm(u)− 1 + p

4

√
1− 4z + o(

√
1− 4z),

where

cm(u) = (pCm−1 + (2− δ2,m)qCm−2)(u− 1)4−m +
3 + p

16
.

Note that for u close to 1, we have

|cm(u)| < 1

4q

and the upper bound is the dominant singularity ofG(z). Thus, G(Hm(u, z)) has also dominant

singularity at z = 1/4. Moreover, as z → 1/4,

G(Hm(u, z)) =
1−

√
1− 4qcm(u)

2q
− 1 + p

4
√

1− 4qcm(u)

√
1− 4z + o(

√
1− 4z).

Now, by singularity analysis,

[zn]G(Hm(u, z)) ∼ 1 + p

8
√
π
√

1− 4qcm(u)
· 4n

n3/2

and by using the expansion of the Catalan numbers (see (1.10))

Cn =
4n√
πn3/2

(
1 +O

(
1

n

))
, (3.1)

we obtain that

P
N

[m]
n

(u) ∼ 1 + p

2
√

1− 4qcm(u)
,

where P
N

[m]
n

(u) denotes the probability generating function of N [m]
n . From this the claimed

result follows from Theorem 9.

As a consequence, we again obtain the asymptotics of the mean.
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Corollary 6. We have,

E(N [m]
n ) ∼ 2

41−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

1 + 2p+ p2
.

Corollary 5 and Corollary 6 now imply Proposition 12 below. But first, we prove a lemma

that will help us to prove this proposition.

Lemma 11. For k ≥ 3, we have
k∑

m=3

4−m(pCm−1 + 2qCm−2) =
p+ 2

16
− (kp+ k − p)(2k − 2)!

4k(k − 1)!k!
. (3.2)

Proof. Let S(k) :=
p+ 2

16
− (kp+ k − p)(2k − 2)!

4k(k − 1)!k!
. Then we have

S(k + 1)− S(k) =
(kp+ k − p)(2k − 2)!

4k(k − 1)!k!
− (kp+ k + 1)(2k)!

4k+1k!(k + 1)!

=
(2k − 2)!

4kk!(k − 1)!

(
kp+ k − p− (kp+ k + 1)(2k − 1)

2(k + 1)

)
=

(2k − 2)!

4kk!(k − 1)!

(
kp+ k − 2p+ 1

2(k + 1)

)
=

(2k − 2)!

4kk!(k − 1)!

(
p(2k − 1)

2(k + 1)
− p(2k − 1)

2(k + 1)
+
kp+ k − 2p+ 1

2(k + 1)

)
=

(2k − 2)!

4kk!(k − 1)!

(
p(2k − 1)

2(k + 1)
+

1− p
2

)
= 4−k−1(pCk + 2qCk−1).

The result immediately follows by summation.

Now, we ready to state and prove the following proposition.

Proposition 12. We have,

E(N) = 1 +
∑
m≥2

E(N [m]).

Proof. Notice that if we take the limit of (3.2) as k →∞, we have∑
m≥3

4−m(pCm−1 + 2qCm−2) =
p+ 2

16
.

Thus, we have

1 +
∑
m≥2

E(N [m]) = 1 +
1− p

2(1 + 2p+ p2)
+

(1− p)(p+ 2)

2(1 + 2p+ p2)

=
5 + 2p+ p2

2 + 4p+ 2p2
.

This proves the desired result.
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Corollary 5 already tells us that there are only few clades since

5 + 2p+ p2

2 + 4p+ 2p2
<

5

2

for any p ≥ 0. This suggest that there is a clade with large size. In Proposition 12, the left-hand

side of the equation suggests that there is only one big clade (represented by the term 1) and

all other clades are small (represented by the summation). This is indeed the case and will be

proven in the next section.

3.3 Largest Clade Size

Finally, we study the last parameter we are interested in in this section which is the size of the

largest clade which we denoted by Mn. Due to the observation from the last section that there

should be one big group, we set Xn := n−Mn.

In order to find the distribution of Xn, we again make use of the two generating functions

from Section 3.1 for the cluster tree. The main observation is that for 0 ≤ k < n/2, we have

P(Xn = k) =
[zk]G′(H(z))[zn−k]H(z)

Cn−1

.

This is explained as follows. Since the largest clade size is equal to n − k, we have to replace

one leaf of the cluster tree by a group of size n− k. This corresponds to the factor [zn−k]H(z).

Then, all other leaves of the cluster tree are replaced by arbitrary groups which corresponds to

the other factor [zk]G′(H(z)). The restriction 0 ≤ k < n/2 is essential here, because it ensures

that all other groups are indeed of size smaller than n− k. Moreover, the range 0 ≤ k < n/2 is

expected to be sufficient for our purpose since we expect that the largest group size is close to

n.

We start with the following lemma.

Lemma 12. Uniformly for 0 ≤ k < n/2, we have

P(Xn = k) =
1 + p

2
4−k[zk]G′(H(z))

(
1− k

n

)−3/2(
1 +O

(
1

n

))
.

Proof. Note that

[zn−k]H(z) = pCn−k−1 + 2qCn−k−2.

The result follows directly by using the expansion of the Catalan numbers in (3.1).

From the last lemma, we obtain the limit distribution of Xn.
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Theorem 14. We have the limit distribution result

Xn
d−→ X,

where X is a discrete random variable with probability generating function

PX(u) =
∑
k≥0

pku
k =

1 + p

2F (u/4)
.

Here,

F (u) =

√
1− 2p+ 2p2 − 4(1− 2p)(1− p)u+ 4(1− p)2u2 − 2(1− p)(p− 2(1− p)u)

√
1− 4u.

(3.3)

Proof. From Lemma 12, we have for fixed k

pk := lim
n→∞

P(Xn = k) =
1 + p

2
4−k[zk]G′(H(z)).

Thus,

PX(u) =
∑
k≥0

pku
k =

1 + p

2
G′(H(u/4))

and the claimed form follows now by plugging into this the expressions for G(z) and H(z) and

straightforward computation.

Note that F (u) has dominant singularity at u = 1/4. Moreover, as u→ 1/4,

PX(u) = 1− 2(1− p)
1 + p

√
1− u+ o(

√
1− u).

From this and Theorems 5 and 7,

pk =
1− p

(1 + p)
√
πk3/2

(
1 +O

(
1

k

))
, (k →∞). (3.4)

Note that all moments of X are infinite. Thus, we cannot apply Theorem 9 to have moment

convergence in the above limit theorem for the largest clade size, in contrast to Theorem 12 and

Theorem 13.

Due to the latter remark, it is interesting to compute moments of Xn (and consequently of

Mn). We will do this next with the help of Lemma 12 and (3.4). To prove the next theorem, we

first need the following crucial lemma.

Lemma 13. We have, ∑
0≤k<n/2

P(Xn = k) = 1 + o(n−1/2) (3.5)
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and for ` ≥ 1 ∑
0≤k<n/2

k`P(Xn = k) ∼ d`n
`−1/2 (3.6)

where

d` =
1− p

(1 + p)
√
π

∫ 1/2

0

x`−3/2(1− x)−3/2dx.

Proof. We will derive the asymptotics of the sum in (3.5) by splitting it into two parts:∑
0≤k<n/2

P(Xn = k) =
∑

0≤k<nρ
P(Xn = k) +

∑
nρ≤k<n/2

P(Xn = k), (3.7)

where ρ > 0 will be chosen as the proof proceeds.

For the first part, we have by Lemma 12,∑
0≤k<nρ

P(Xn = k) =
∑

0≤k<nρ
pk(1 +O(nρ−1)) =

∑
0≤k<nρ

pk(1 + o(n−1/2)),

where pk was defined in Theorem 14 and ρ < 1/2 so that the last equality holds. Note that∑
0≤k<nρ

pk = 1−
∑
k≥nρ

pk = 1− 1− p
(1 + p)

√
π

∑
k≥nρ

k−3/2(1 +O(1/k)),

where we used (3.4) in the last step. Combining the two equations above, we get∑
0≤k<nρ

P(Xn = k) = 1− 1− p
(1 + p)

√
π

∑
k≥nρ

k−3/2(1 +O(1/k)) + o(n−1/2). (3.8)

The asymptotic of the sum on the right-hand side of the equation can be derived by using the

Euler-Maclaurin summation formula:∑
k≥nρ

k−3/2 =

∫ ∞
nρ

x−3/2dx+O(n−3ρ/2) = 2n−ρ/2 + o(n−1/2),

where the last step holds whenever ρ > 1/3. The asymptotic of the O-term in (3.8) can be

derived in a similar manner and we have∑
k≥nρ
O(k−5/2) = O(n−3ρ/2) = o(n−1/2),

where the last equality holds for ρ > 1/3. Thus, we obtain that∑
0≤k<nρ

P(Xn = k) = 1− 2(1− p)
(1 + p)

√
π
n−ρ/2 + o(n−1/2). (3.9)

Now, we turn to the second part of the decomposition of (3.7) for which we use the expan-

sions from Lemma 12 and (3.4):∑
nρ≤k<n/2

P(Xn = k) =
1− p

(p+ 1)
√
π

∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2(1 +O(1/k)). (3.10)
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Using again Euler-Maclaurin summation formula,∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2 =

∫ n/2

nρ
x−3/2(1− x/n)−3/2dx+ o(n−1/2).

Note that ∫
x−3/2(1− x/n)−3/2dx =

2(2x− n)√
nx(n− x)

and thus ∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2 = 2n−ρ/2 + o(n−1/2).

Together with a similar treatment of the O-term in (3.10), we obtain that∑
nρ≤k<n/2

P(Xn = k) =
2(1− p)

(1 + p)
√
π
n−ρ/2 + o(n−1/2). (3.11)

Finally, substituting (3.9) and (3.11) into (3.7) gives the desired result.

Next, we proceed to the proof of (3.6). In a similar manner, we split the sum into∑
0≤k<n/2

k`P(Xn = k) =
∑

0≤k<nρ
k`P(Xn = k) +

∑
nρ≤k<n/2

k`P(Xn = k), (3.12)

where ρ is again chosen as the proof proceed.

For the first term on the right-hand side of (3.12):∑
0≤k<nρ

k`P(Xn = k) ≤ nρ` = o(n`−1/2),

where the last step holds when ρ < 1/2.

For the second term on the right-hand side of (3.12), we again apply the expansions in

Lemma 12 and (3.4):∑
nρ≤k<n/2

k`P(Xn = k) =
1− p

(1 + p)
√
π

∑
nρ≤k<n/2

k`−3/2(1− k/n)−3/2(1 +O(1/k)). (3.13)

Using once more Euler-Maclaurin summation formula yields∑
nρ≤k<n/2

k`−3/2(1− k/n)−3/2 =

∫ n/2

nρ
x`−3/2(1− x/n)−3/2dx+ o(n`−1/2)

=

∫ n/2

0

x`−3/2(1− x/n)−3/2dx+ o(n`−1/2)

=

(∫ 1/2

0

x`−3/2(1− x)−3/2dx

)
n`−1/2 + o(n`−1/2).

The O-term in (3.13) is treated similarly.

Finally, substituting the above two equations into (3.12) gives the desired result.
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From this lemma, we obtain now the asymptotics of all moments of Xn.

Theorem 15. For ` ≥ 1, we have

E(X`
n) ∼ d`n

`−1/2,

where d` is as in Lemma 13.

Proof. Since

E(X`
n) =

∑
0≤k≤n

k`P(Xn = k) =
∑

0≤k<n/2

k`P(Xn = k) +
∑

n/2≤k≤n

k`P(Xn = k)

we only need to show that the second term is o(n`−1/2). This follows directly from

∑
n/2≤k≤n

k`P(Xn = k) ≤ n`

1−
∑

0≤k<n/2

P(Xn = k)

 = o(n`−1/2),

where (3.5) is used in the last estimate.

Finally, we obtain the asymptotics of moments of the maximal clade size Mn which indeed

shows that the groups have one big clade.

Corollary 7. We have,

E(Mn) = n− 2(1− p)
(1 + p)

√
π
n1/2 + o(n1/2)

and for ` ≥ 2

E(Mn − E(Mn))` ∼ (−1)`d`n
`−1/2,

where d` is as in Lemma 13.
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Chapter 4

Ancestral Configurations

In the previous chapters, we need that the evolutionary structures reflect the genetic relationship

between different species. Due to incomplete lineage sorting, problems on inferences on the

species structure via genetic data often occurs. Thus, strategies on more accurate inferences in

species structure have been presented in different articles, see (Degnan and Salter, 2005; Slatkin

and Pollack, 2006; Degnan and Rosenberg, 2005).

Another problem that arises in the study of the relationship between species tree and gene

tree is computing gene tree probabilities. In (Degnan and Salter, 2005), the authors developed

a non-recursive algorithm to compute such probabilities. Unfortunately, the method uses a lot

of computing time and is thus not suitable for large computations. In (Wu, 2012), the author

proposed a recursive way to compute these probabilities. The probabilities were computed via

ancestral configurations.

Before we give the definition of ancestral configurations, we first establish the following

notations and conventions. Here, we will consider a gene tree G with its matching species tree

S which will be represented by a phylogenetic tree τ . Throughout this section, we will only

consider matching gene trees G and species trees S, that is, G = S = τ for some phylogenetic

tree τ . In addition, we will give an arbitrary labelling of the internal nodes of the phylogenetic

tree, see Figure 4.1. Moreover, we will also label the edges of the tree by the label of the node

immediately descendant of the edge. For example, in Figure 4.1, we label edge gj by g.

A realization R of a gene tree G is one of the evolutionary possibilities of G on its corre-

sponding species tree S. In Figure 4.1, R1 and R2 are different realizations of G. In R1, note

that the gene j of G appears way back further than species j of S (it appears before the appear-

ance of the species k of S). However, no matter which realization of S, j cannot appear after
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g

h

i

j

k

Figure 4.1: A gene tree G and species tree S with matching phylogenetic tree τ . R1 and R2

are different realization of the gene tree G (blue dashed line) embedded on its corresponding

species tree S (black solid line).

the appearance of the species j of S.

Let R be a fixed realization of a gene tree G on its species tree S. For each internal node

x of S, the ancestral configuration of R at x is the set of the gene lineages (edges of R) that

are in S at the point just before the species x. We denote the ancestral configuration of R at x

by C(x,R). For example, consider the realization R1 in Figure 4.1. The gene lineages that are

present at k of S are g, h, and i. Hence, C(k,R1) = {g, h, i}. The other ancestral configurations

of G are C(j, R1) = {g, c, d}, C(g,R1) = {a, b}, C(h,R1) = {c, d}, and C(i, R1) = {e, f}.

By convention, we say that the leaves have no ancestral configuration. This is due to the fact

that information of the gene lineages that appears in the leaves are still unavailable.

Next, denote by <(τ) the set of all realizations of the gene tree G = τ on its species tree

S = τ . For each internal node x, we denote the set of ancestral configurations of G at x by

C(x) = {C(x,R) : R ∈ <(τ)}

and its corresponding cardinality by

Cx = |C(x)|.

Consider the phylogenetic tree τ in Figure 4.1. Then, we have

C(g) = {{a, b}}, C(h) = {{c, d}}, C(i) = {{e, f}},

C(j) = {{a, b, c, d}, {g, c, d}, {a, b, h}, {g, h}}

and

C(k) = {{j, i}, {j, e, f}, {g, h, i}, {g, h, e, f}, {a, b, h, i}, {a, b, h, e, f}, {g, c, d, i},
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{g, c, d, e, f}, {a, b, c, d, i}, {a, b, c, d, e, f}}. (4.1)

Their corresponding cardinalities are given by Cg = Ch = Ci = 1, Cj = 4 and Ck = 10.

Note that Cx counts the number of ways the gene lineages of G reaches x in S over all

possible realization of G. Moreover, note that Cx depends only on the shape of τ for any

internal nodes x. Thus, the following are well-defined. First, we define the root configurations

of τ denoted by Rτ which is given by

Rτ = Cr

where r is the root of τ . We also define the total configurations of τ denoted by Tτ which is

given by

Tτ =
∑
x

Cx

where the sum runs over all internal nodes x of τ . Note that the two parameters can be computed

recursively by

Rτ = (Rτ` + 1)(Rτr + 1) (4.2)

and

Tτ = Tτ` + Tτr +Rτ (4.3)

where τ` (resp. τr) are the two subtrees of τ . The first equation can be explain as follows. A

root configuration of τ can be obtained by either a union of a root configuration of τ` and τr,

union of a root configuration of τ` and the root of τr, union of a root configuration of τr and the

root of τ`, or the root of the tree. This gives us the desired result. The second equation follows

directly from the definition of the total configurations of τ .

Applying the formula to the phylogenetic tree τ in Figure 4.1, we haveRτ = (Rτ`+1)(Rτr+

1) = (4 + 1)(1 + 1) = 10 and Tτ = Tτ` + Tτr +Rτ = 4 + 1 + 10 = 15.

In this chapter, we will be studying the limit law and the moments of these parameters

under the uniform model and the Yule-Harding model. The rest of the section is as follows.

Since the total configurations depends on the root configurations, we will start by studying the

root configurations in Section 4.1. The limit law and the moments of the root configurations

will be derived in this section. Finally, in Section 4.2, we will study the total configurations for

which we use similar tools to derive the limit law and the moments. The limit laws were derived

using the results in Section 1.5.
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4.1 Root Configurations

We now consider the root configurations as a random parameter which we will denote by Rn.

Note that this parameter depends only on the shape of the tree and thus we can consider τ to be

embedded into the plane. Thus,

Rn
d
= (RIn + 1)(R∗n−In + 1) (4.4)

with R1 = 0, where equality holds in distribution and In is the size of the left subtree and R∗n is

an independent copy of Rn. This holds for both uniform and Yule-Harding model. This follows

directly from (4.2).

Since we want to apply the results of Wagner (2015), we need to consider an additive pa-

rameter. By simple manipulation of (4.2), we have

Rτ + 1 = (Rτ` + 1)(Rτr + 1)

(
1 +

1

Rτ

)
.

Thus, we have

log(Rτ + 1) = log(Rτ` + 1) + log(R∗τr + 1) + log

(
1 +

1

Rτ

)
.

Therefore, we have an additive parameter X (τ) = log(Rτ + 1) with toll function f(τ) =(
1 +

1

Rτ

)
.

First, we recall some known result for root configurations. Disanto and Rosenberg (2017)

showed that under the uniform model, we have

E(Rn) ∼
√

3

2

(
4

3

)n
and

Var(Rn) ∼

√
7(11−

√
2)

34

[
4

7(8
√

2− 11)

]n
.

Thus, we are left with finding the limit distributions under the uniform and Yule-Harding model

and the mean and variance of Rn under the Yule-Harding model.

4.1.1 Limit Distributions of Root Configurations

First, we consider the root configurations Rn under the uniform model. Before we give our

result, we first establish the relationship of antichains of a poset and root configurations.

Fix a plane binary tree τ of size n. Let τ̃ be a plane tree obtained by removing the leaves

of τ . The resulting tree τ̃ is called a pruned binary tree, see Section 1.1. Figure 4.2 shows an
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example of the pruning process. Now, consider the poset (X,<) induced by τ̃ by considering

τ̃ as its Hasse diagram with X be the set of the internal nodes of τ . Let A(τ̃) be the number of

non-empty anti-chains of (X,<). In Figure 4.2, the non-empty antichains are

{g}, {h}, {i}, {j}, {k}, {g, h}, {g, i}, {h, i}, {j, i}, {k, i}, and {g, h, i}. (4.5)

Thus, A(τ̃) = 10.

τ

a b c d e f

g h i

j

k
τ̃

g h i

j

k

Figure 4.2: A bifurcating tree τ together with is corresponding pruned tree τ̃ .

Note that A(τ̃) can be computed recursively by

A(τ̃) = (1 + A(τ̃`))(1 + A(τ̃r))

where τ̃` (resp. τ̃r) are the left (resp. right) subtree of τ̃ . This is explained as follows. The non-

empty antichains in A(τ̃) are either the root or the union of the antichains (possibly empty set)

in A(τ̃`) and A(τ̃r). The empty set in the union is being compensated by the root. This suggests

that the non-empty antichains of the pruned binary tree are related to the root configurations of

phylogenetic trees. Actually, (4.5) can be obtained from (4.1) by removing all the leaves in the

sets of (4.1) and replacing the empty set by the set containing the root.

Indeed, if we take τ to be a random uniform plane binary tree and An denotes the number

of non-empty antichains of τ̃ , then

An
d
= (1 + AIn)(1 + A∗n−In)

with A1 = 0 and In is the size of the left subtree of τ and A∗n is an independent copy of An.

This is the same as the distributional recurrence of Rn. Thus, their limit laws must coincide.

Wagner (2015) showed the limit law for log (An). The result is stated as follows.
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Proposition 13. Let An be the number of non-empty antichains of random uniform pruned

binary trees with n− 1 nodes. Let µn = E (log (An)) and σ2
n = Var (log (An)). Then, we have

µn ∼ µn and σ2
n ∼ σ2n

where µ ≈ 0.272 and σ2 ≈ 0.034. Moreover,

log(An)− µn
σn

converges weakly to the standard normal distribution N (0, 1).

Consequently, we have the following theorem.

Theorem 16. Let Rn be the root configuration of random uniform phylogenetic trees of size n.

Let µn = E (log (Rn)) and σ2
n = Var (log (Rn)). Then, we have

µn ∼ µn and σ2
n ∼ σ2n

where µ ≈ 0.272 and σ2 ≈ 0.034. Moreover,

log (Rn)− µn
σn

converges weakly to the standard normal distribution N (0, 1).

Proof. This follows directly from Proposition 13 and Lemma 1.

We now consider the root configuration Rn under the Yule-Harding model. We will apply

Proposition 4 directly. Thus, we need a bound for the toll function.

Lemma 14. Let Rn be the root configurations of a random uniform ranked plane binary trees

of size n. Then, we have

E
(

log

(
1 +

1

Rn

))
= O((0.9)n).

Proof. First, we fix a ranked plane binary tree τ . Note that Rτ ≥ 2ch(τ) where ch(τ) is the

number of cherries of τ . The inequality holds since every set set cherry nodes can form a

configuration at the root. Since log(1 + x) ≤ x for x ≥ 0, we have

E
(

log

(
1 +

1

Rn

))
≤ E(R−1

n ) ≤ E(2−ch).

Therefore, it is sufficient to show that E(2−ch) = O((0.9)n).
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Disanto and Wiehe (2013) studied the generating function F (x, z) which counts the number

of ranked bifurcating trees τ of size n with a given number of cherries, where each ranked

bifurcating tree τ is weighted by its probability 2n−1−ch(τ)}/(n− 1)! under the Yule-Harding

distribution:

F (x, z) =
∑
τ

2n−1−ch(τ)

(n− 1)!
xch(τ)zn.

The sum is taken over ranked bifurcating trees. The coefficient of xhzn in F (x, z) gives the

probability of h cherries in ranked bifurcating trees of size n under the Yule-Harding model,

or equivalently, the probability of h cherries in ranked plane binary trees of size n selected

uniformly at random. Hence, the expression En[2−ch] can be obtained from the coefficient of zn

in F (1
2
, z). Disanto and Wiehe (2013) showed that

F

(
1

2
, z

)
= f(z) =

zez
√

2 − z
(
√

2− 2)ez
√

2 + 2 +
√

2
.

We now apply singularity analysis to f(z) to extract its coefficient. Note that the dominant

singularity of f(z) is α which is a zero of the denominator. Computing for the value of α, we

have

α =
1√
2

log

(
2 +
√

2

2−
√

2

)
=

√
2 log(3 + 2

√
2)

2
,

Therefore, α−1 ≈ 0.802 and consequently, En[2−ch] = O((0.9)n) which completes the proof.

Now, we are ready to apply Proposition 4. Note that∑
τ

log

(
1 +

1

Rτ

)
|Fn|

= E
(

log

(
1 +

1

Rn

))
= O((0.9)n)

which satisfies the condition of the proposition.

Theorem 17. LetRn be the root configuration of phylogenetic trees of size n selected at random

under the Yule-Harding model. Let µn = E (log (Rn)) and σ2
n = Var (log (Rn)). Then, we have

µn ∼ µn and σ2
n ∼ σ2n

where µ ≈ 0.351 and σ2 ≈ 0.008. Moreover,

log (Rn)− µn
σn

converges weakly to the standard normal distribution N (0, 1).
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Proof. This follows directly from Proposition 4 and Lemma 4.

Exact values of µ and σ can be obtained from Proposition 4. Unfortunately, we find it

difficult to write a simple closed form for µ and σ and thus, we only gave their approximate

values.

4.1.2 Mean and Variance of Root Configurations under the Yule-Harding

Model

In this section, we derive the mean and variance of the number of root configurations under the

Yule-Harding model. Our result is as follows.

Theorem 18. Let Rn be the number of root configurations of a phylogenetic tree selected at

random under the Yule-Harding model. Then, we have

E(Rn) ∼ 1

(1− e−2π
√

3/9)n
and Var(Rn) ∼ cn

where c = 2.0449954971....

The exact value of the constant c is difficult to obtain but using the method in the proof of

Proposition 14, we can find an approximation for c with error as small as we want.

Proof. We begin with the proof for the mean.

Let en = E(Rn) and E(z) =
∑

n≥1 enz
n be its generating function. By (4.4) and Lemma 5,

we have

en = 1 +
1

n− 1

n−1∑
j=1

ejen−j +
2

n− 1

n−1∑
j=1

ej, (4.6)

with e1 = 0. Multiplying both sides of the equation by n− 1 and taking the necessary sum, we

have ∑
n≥1

(n− 1)enz
n = zE ′(z)− E(z),

∑
n≥1

(n− 1)zn =
z2

(1− z)2
,

∑
n≥1

(
n−1∑
j=1

enen−j

)
zn = E(z)2 and

∑
n≥1

(
n−1∑
j=1

ej

)
zn =

z

1− z
E(z).

Therefore, we have the Riccati differential equation

zE ′(z) = E(z)2 +
1 + z

1− z
E(z) +

z2

(1− z)2
,
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with initial condition E(0) = 0. Solving this differential equation, we have

E(z) =
2z sin

(√
3

2
log(1− z)

)
(z − 1)

[√
3 cos

(√
3

2
log(1− z)

)
+ sin

(√
3

2
log(1− z)

)] .
Note that the dominant singularity of E(z) is β = 1− e−2π

√
3/9 which is a zero of

√
3 cos

(√
3

2
log(1− z)

)
+ sin

(√
3

2
log(1− z)

)
.

As z → β, we have

S(z) ∼ 1

1− z
β

.

Therefore, by singularity analysis, we have E(Rn) = (1− e−2π
√

3/9)−n.

Next, we take a look at the variance of Rn.

Let sn = E(R2
n) and S(z) =

∑
n≥1 snz

n be its generating function. Again, from (4.4) and

Lemma 5, we have

sn = 1+
1

n− 1

n−1∑
j=1

sj sn−j+
2

n− 1

n−1∑
j=1

sj+
4

n− 1

n−1∑
j=1

sj en−j+
4

n− 1

n−1∑
j=1

ej en−j+
4

n− 1

n−1∑
j=1

ej,

with s1 = 0. Using a similar method above, we obtain the Riccati differential equation

z S ′(z) = S(z)2 − S(z)

[
1 + z

z − 1
− 4E(z)

]
+

[z − 2(z − 1)E(z)]2

(z − 1)2

with initial condition S(0) = 0. Solving for the exact expression of S(z) is quite difficult since

E(z) is already complicated. So, we find a roundabout way to analyse the coefficient of S(z).

First, by setting(
g2(z), g1(z), g0(z)

)
:=

(
1

z
,

(
4E(z)− 1 + z

z − 1

)
1

z
,
[z − 2(z − 1)E(z)]2

z(z − 1)2

)
,

we have

S ′(z) = g2(z)S(z)2 + g1(z)S(z) + g0(z).

Let U(z) = exp

(
−
∫ z

0

S(x)

x
dx

)
. Then, we have

S(z) = −zU
′(z)

U(z)
.

In addition, we have

U ′′(z)−
(
g1(z) +

g′2(z)

g2(z)

)
U ′(z) + g2(z) g0(z)U(z) = 0 (4.7)
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with U(0) = 1 and U ′(0) = −S ′(0)/2. Notice that the coefficients in (4.7) are analytic for

|z| < 0.702 (lower bound for the radius of convergence of E(z)), with removable singularity at

z = 0. Thus, U(z) must be analytic for |z| < 0.702. Therefore, S(z) is a meromorphic function

in |z| < 0.702. To analyse S(z), we need to find the zeroes of U(z) with least modulus. In fact,

we will show later that U(z) has a unique root α = 0.4889986317... on B = {z ∈ C : |z| ≤
1
2
}, see Proposition 14. Thus, the dominant singularity of S(z) is α. In addition, notice that

U(z) = (z − α)Ũ(z) where Ũ(α) 6= 0. Moreover, U ′(α) = Ũ(α) 6= 0. Thus, as z → α, we

have

S(z) = − α[U ′(α) + U ′′(α)(z − α) + · · · ]
U(α) + U ′(α)(z − α) + U ′′(α)(z − α)2 + · · ·

∼ − αU ′(α)

U ′(α)(z − α)
=

1

1− z
α

.

Hence, we have sn ∼ α−n.

Since Var(Rn) = sn − en2 and α−1 > (1− e−2π
√

3/9)2, we have

Var(Rn) ∼ α−n.

This proves the second claim of the theorem.

To complete the proof, we still need to show that U(z) has a unique root α on B. Moreover,

we need compute an approximate value of α−1.

Before we state and prove the claim, we give an outline of the proof of this claim. First,

since U(z) is analytic on |z| < 0.702, it can be written in its power series expansion U(z) =∑
n≥0 unz

n. The recurrence un will be derived in Lemma 15. Then we will obtain a bound

for |un| in Lemma 17 in B with the help of the bound for en which we will obtain in Lemma

16. Next, we will split the terms of the power series into U1(z) =
∑100

n≥0 unz
n and U2(z) =∑

n≥101 unz
n. In Lemma 18, we will obtain a bound for |U1(z)| in ∂B by using the bound of

|un|. We will conclude in Proposition 14 by applying Rouché’s theorem.

Lemma 15. For n ≥ 2, we have

un =
1

n(n− 1)

n−1∑
k=0

(3n− k − 3)uk

− 4

n(n− 1)

n−1∑
k=0

(n− 2k − 1)en−kuk +
4

n(n− 1)

n−1∑
k=0

( n−k−1∑
j=0

ej

)
uk, (4.8)

with u0 = 1 and u1 = 0.
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Proof. First notice that for n ≥ 0, the coefficient of zn in each term of (4.7) can be written as

[zn]U ′′(z) = (n+ 2)(n+ 1)un+2

−[zn]

(
g1 +

g′2
g2

)
U ′(z) = −

n∑
k=0

(n− k + 1)(4ek+1 + 2)un−k+1

[zn]g2g0U(z) =
n∑
k=0

[
(k + 1) + 4

k∑
j=0

ej+1 + 4
k+2∑
j=0

ejek−j+2

]
un−k,

where for convenience we set e0 = 0.

Making a substitution to the index of summation, we have

− 4
n∑
k=0

(n− k + 1)ek+1un−k+1 = −4
n+1∑
k=0

ken−k+2uk.

Hence, the sum for −[zn](g1 + g′2/g2)U ′(z) can be simplified as

− [zn]

(
g1 +

g′2
g2

)
U ′(z) = −4

n+1∑
k=0

ken−k+2uk − 2
n∑
k=0

(n− k + 1)un−k+1.

The second sum in this equation together with the first sum
∑n

k=0(k + 1)un−k of [zn]g2g0U(z)

give

− 2
n∑
k=0

(n− k + 1)un−k+1 +
n∑
k=0

(k + 1)un−k =
n+1∑
k=0

(n− 3k + 1)uk.

Furthermore, by setting n = k + 2 in (4.6), the inner sums of [zn]g2g0U(z) can be rewritten as

4
k∑
j=0

ej+1 + 4
k+1∑
j=0

ejek−j+2 = 4(k + 1)ek+2 − 4(k + 1)− 4
k+1∑
j=1

ej.

Hence, the coefficient of zn in (4.7) becomes

(n+ 2)(n+ 1)un+2 − 4
n+1∑
k=0

ken−k+2uk +
n+1∑
k=0

(n− 3k + 1)uk

+
n∑
k=0

[
4(k + 1)ek+2 − 4(k + 1)− 4

k+1∑
j=1

ej

]
un−k.

In this expression, we make two substitutions:

n∑
k=0

4(k + 1)ek+2un−k =
n+1∑
k=0

4(n− k + 1)en−k+2uk

n+1∑
k=0

(n− 3k + 1)uk − 4
n∑
k=0

(k + 1)un−k =
n+1∑
k=0

(n− 3k + 1)uk − 4
n∑
k=0

(n− k + 1)uk

=
n+1∑
k=0

(−3n+ k − 3)uk,
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obtaining

(n+ 2)(n+ 1)un+2 − 4
n+1∑
k=0

ken−k+2uk +
n+1∑
k=0

4(n− k + 1)en−k+2uk +
n+1∑
k=0

(−3n+ k − 3)uk

+
n∑
k=0

(
− 4

k+1∑
j=1

ej

)
un−k,

and thus

(n+2)(n+1)un+2+
n+1∑
k=0

4(n−2k+1)en−k+2uk+
n+1∑
k=0

(−3n+k−3)uk+
n∑
k=0

(
−4

k+1∑
j=1

ej

)
un−k.

Finally, because e0 = 0, in this expression we can substitute
n∑
k=0

(
− 4

k+1∑
j=1

ej

)
un−k =

n∑
k=0

(
− 4

k+1∑
j=0

ej

)
un−k

=
n∑
k=0

(
− 4

n−k+1∑
j=0

ej

)
uk

=
n+1∑
k=0

(
− 4

n−k+1∑
j=0

ej

)
uk,

obtaining for n ≥ 0

(n+2)(n+1)un+2+
n+1∑
k=0

4(n−2k+1)en−k+2uk−
n+1∑
k=0

(3n−k+3)uk−4
n+1∑
k=0

( n−k+1∑
j=0

ej

)
uk = 0,

which rescaled is recurrence (4.8). The starting conditions u0 = 1 and u1 = 0, follow from the

fact that U(0) = 1 and U ′(0) = 0 as U(z) = exp[
∫ z

0
S(x)/(−x) dx].

In Lemma 17, we use the recurrence to find an upper bound for |un|. First, we need an upper

bound for en.

Lemma 16. For n ≥ 0, we have

en ≤
(

9

10

)(
3

2

)n
.

Proof. Using (4.6), with the help of computing software we have shown that the inequality

holds for 0 ≤ n ≤ 41. We proceed by induction. Suppose the inequality holds for all k < n

with n > 41. By (4.6),

en ≤ 1 +
81

100(n− 1)

n−1∑
j=1

(
3

2

)n
+

9

5(n− 1)

n−1∑
j=1

(
3

2

)j
= 1 +

81

100

(
3

2

)n
+

18

5(n− 1)

(
3

2

)n
− 27

5(n− 1)

=
9

10

(
3

2

)n
− 9

10

(
1

10
− 4

n− 1

)(
3

2

)n
− 27

5(n− 1)
+ 1.

76



In the last step, we can see that a positive number is subtracted from 9
10

(3
2
)n for n > 41, as

9

10

(
1

10
− 4

n− 1

)(
3

2

)n
+

27

5(n− 1)
− 1 >

9

10

1

400

(
3

2

)42

− 1 > 0.

Thus, the claim is proved.

Lemma 17. For n ≥ 0, we have

|un| ≤
(

9

5

)n
.

Proof. Using (4.8), computing software verifies the inequality for 0 ≤ n ≤ 25. We proceed

by induction. Suppose that the inequality holds for all k < n with n > 25. For simplicity of

computation, instead of the bound in Lemma 16, we use the more conservative (3
2
)n as a bound

for en. With (4.8), we get

|un| ≤
3

n

n−1∑
k=0

(
9

5

)k
+

4

n

n−1∑
k=0

(
3

2

)n−k (
9

5

)k
+

4

n(n− 1)

n−1∑
k=0

(
n−k−1∑
j=0

(
3

2

)j)(
9

5

)k

=
15

4n

(
9

5

)n
− 15

4n
+

20

n

(
9

5

)n
− 20

n

(
3

2

)n
+

30

n(n− 1)

(
9

5

)n
− 40

n(n− 1)

(
3

2

)n
+

10

n(n− 1)

=
5(19n+ 5)

4n(n− 1)

(
9

5

)n
− 20(n+ 1)

n(n− 1)

(
3

2

)n
− 5(3n− 11)

4n(n− 1)
.

In the last step, we have |un| ≤ (9
5
)n, as for n > 25, the following two inequalities hold:

5(19n+ 5)

4n(n− 1)
≤ 1

−20(n+ 1)

n(n− 1)

(
3

2

)n
− 5(3n− 11)

4n(n− 1)
≤ 0.

Thus, the claim is proved.

We now consider the set B ≡ {z ∈ C : |z| ≤ 1
2
}, and the partition U(z) =

∑∞
k=0 ukz

k =

U1(z) + U2(z), U1(z) ≡
∑100

k=0 ukz
k and U2(z) ≡

∑∞
k=101 ukz

k. Using the bound for |un| from

Lemma 17, for each z ∈ B we have

|U2(z)| ≤
∞∑

k=101

|uk| |z|k ≤
∞∑

k=101

(
9

5

)k (
1

2

)k
= 10

(
9

10

)101

≈ 0.0002390525900. (4.9)

Next, we need a lower bound for |U1(z)|.
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Lemma 18. We have

min
z∈∂B
|U1(z)| ≥ 3

1000
.

Proof. We obtain the result by considering a function

G(t) ≡

[
100∑
k=0

uk cos(kt)

(
1

2

)k]2

+

[
100∑
k=0

uk sin(kt)

(
1

2

)k]2

.

G(t) has period 2π, with G(π − t) = G(π + t), if t ∈ [0, π]. For |z| ∈ ∂B we can write

z = 1
2
[cos t+ i sin t] for t ∈ [0, 2π), and thus

|U1(z)| =

∣∣∣∣∣
100∑
k=0

uk

[(
1

2

)
[cos t+ i sin t]

]k∣∣∣∣∣
=

∣∣∣∣∣
100∑
k=0

uk cos(kt)

(
1

2

)k
+ i

100∑
k=0

uk sin(kt)

(
1

2

)k∣∣∣∣∣
=
√
G(t).

By using the bound in Lemma 17, we have the following inequality

|G′(t)| =

∣∣∣∣∣2
[

100∑
k=0

uk cos(kt)

(
1

2

)k][
−

100∑
k=0

kuk sin(kt)

(
1

2

)k]

+2

[
100∑
k=0

uk sin(kt)

(
1

2

)k][ 100∑
k=0

kuk cos(kt)

(
1

2

)k]∣∣∣∣∣
≤ 2

∣∣∣∣∣
100∑
k=0

uk cos(kt)

(
1

2

)k∣∣∣∣∣
∣∣∣∣∣

100∑
k=0

kuk sin(kt)

(
1

2

)k∣∣∣∣∣
+ 2

∣∣∣∣∣
100∑
k=0

uk sin(kt)

(
1

2

)k∣∣∣∣∣
∣∣∣∣∣

100∑
k=0

kuk cos(kt)

(
1

2

)k∣∣∣∣∣
≤ 2

[
100∑
k=0

|uk|| cos(kt)|
(

1

2

)k][ 100∑
k=0

k|uk|| sin(kt)|
(

1

2

)k]

+ 2

[
100∑
k=0

|uk|| sin(kt)|
(

1

2

)k][ 100∑
k=0

k|uk|| cos(kt)|
(

1

2

)k]

≤ 4

[
100∑
k=0

(
9

10

)k][ 100∑
k=0

k

(
9

10

)k]
≈ 3598.862135. (4.10)

We set I = { kπ
1000000

: k ∈ Z, 0 ≤ k ≤ 1000000}. A numerical calculation shows that

min
t∈I

G(t) = G(0) ≈ 0.01949528529. (4.11)

With these preparations complete, we prove our claim by showing that

min
t∈[0,π]

G(t) ≥ 9

1000000
. (4.12)
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We prove (4.12) by contradiction. Suppose there exists t0 ∈ [0, π] such that G(t0) < 9
1000000

.

Then we can find t1 ∈ I such that

|t1 − t0| ≤
π

2000000
. (4.13)

By the Mean Value Theorem, we can find c ∈ (t0, t1) such that G(t1)−G(t0) = G′(c)(t1− t0).

From (4.10) and (4.13),

1800π

1000000
≥ |G′(c)(t1 − t0)| = |G(t1)−G(t0)| ≥ G(t1)−G(t0). (4.14)

However, because t1 ∈ I, by (4.11), we have

G(t1)−G(t0) ≥ G(0)−G(t0) ≥ 1

100
− 9

1000000
=

9991

1000000
.

This result contradicts the upper bound in (4.14). Thus, (4.12) holds and the claim has been

proven.

Lemma 19. The polynomialU1(z) has a unique (simple) root β insideB, with β ≈ 0.4889986317.

Proof. First, by the Intermediate Value Theorem, there exists a real root β with 0 < β < 1
2
, as

we can numerically compute U1(0)U1(1
2
) < 0 for the polynomial U1(z). Thus, we must prove

U1(z)

z − β
=
U1(z)− U1(β)

z − β
=

100∑
k=0

uk
zk − βk

z − β
=

100∑
k=0

uk

k−1∑
`=0

βk−1−`z` =
99∑
`=0

(
100∑

k=`+1

ukβ
k−1−`

)
z`

satisfies |U1(z)/(z − β)| > 0 in B.

To do so, we first use the bisection method for root-finding to numerically approximate β

by

β̃ =
1101127027820569

2251799813685248
≈ 0.4889986317,

with the approximation error

|β − β̃| ≤ 1

250
. (4.15)

Then, we define the polynomial

Q(z) ≡
99∑
`=0

a`z
`, with a` ≡

100∑
k=`+1

ukβ̃
k−1−`,

through which we can write

U1(z)

z − β
= Q(z) + (β − β̃)R(z),

R(z) ≡
99∑
`=0

(
100∑

k=`+1

uk
βk−1−` − β̃k−1−`

β − β̃

)
z` =

99∑
`=0

(
100∑

k=`+2

uk

k−2−`∑
j=0

βjβ̃k−2−`−j

)
z`.
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Note that on B,

|R(z)| ≤
99∑
`=0

100∑
k=`+2

k−2−`∑
j=0

|uk||β|j|β̃|k−2−`−j|z|` ≤
99∑
`=0

100∑
k=`+2

k−2−`∑
j=0

(
9

5

)k (
1

2

)k−2

≈ 3234.224489,

(4.16)

where we used the bound for |un| from Lemma 17 and the fact that β, β̃, |z| ≤ 1
2
.

Next, let us consider the function

S(r, θ) ≡
99∑
`=0

a`r
` cos(`θ)

defined over the rectangle (r, θ) ∈ [0, 1
2
] × [0, π], where S(r, θ) = <(Q(z)) if z = r[cos(θ) ±

i sin(θ)] ∈ B. We need the following bound for the gradient of S:

|∇S| =

∣∣∣∣∣
(

99∑
`=0

`a`r
`−1 cos(`θ),

99∑
`=0

−`a`r` sin(`θ)

)∣∣∣∣∣ =

∣∣∣∣∣
99∑
`=0

(
`a`r

`−1 cos(`θ),−`a`r` sin(`θ)
)∣∣∣∣∣

=

∣∣∣∣∣
99∑
`=0

`a`r
`−1 (cos(`θ),−r sin(`θ))

∣∣∣∣∣ ≤
99∑
`=0

`|a`||r|`−1| (cos(`θ),−r sin(`θ)) |

≤
99∑
`=0

`|a`||r|`−1 ≤
99∑
`=0

`|a`|
(

1

2

)`−1

≈ 89.628949. (4.17)

Here, we have made use of |r| < 1
2

and for |r| < 1,
√

cos2 x+ r2 sin2 x ≤
√

cos2 x+ sin2 x =

1.

A numerical calculation shows that over the grid I ≡ {( k
2000

, jπ
1000

) : (k, j) ∈ Z2, 0 ≤

k, j ≤ 1000}, we have

min
(r,θ)∈I

|S(r, θ)| =
∣∣∣∣S (1

2
,
502π

1000

)∣∣∣∣ ≈ 0.9518894218. (4.18)

We now show—with a similar method to that used to prove Lemma 18—that

min
(r,θ)∈[0, 1

2
]×[0,π]

|S(r, θ)| ≥ 3235

250
. (4.19)

Suppose for contradiction that there exists z0 = (r0, θ0) ∈ [0, 1
2
]×[0, π] such that |S(r0, θ0)| <

3235/250. Then let us take z1 = (r1, θ1) ∈ I such that

|z1 − z0| <
√

1

16
+
π2

4

(
1

1000

)
≤ 1

500
. (4.20)

By the Mean Value Theorem, there exists a point (r, θ) on the line segment from (r0, θ0) to

(r1, θ1) such that

∇S(r, θ) · (z1 − z0) = S(r1, θ1)− S(r0, θ0),
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where · is the inner product of R2. By using the Cauchy-Schwarz inequality together with

(4.17), (4.18) and (4.20), the assumption |S(r0, θ0)| < 3235/250 would thus give

90

500
≥ |∇S(r, θ)||z1 − z0| ≥ |∇S(r, θ) · (z1 − z0)| = |S(r1, θ1)− S(r0, θ0)|

≥ |S(r1, θ1)| − |S(r0, θ0)| ≥ 9

10
− 3235

250
> 0.89,

which is a contradiction. Hence, (4.19) holds.

Finally, because for z ∈ B we have

|Q(z)| ≥ |<(Q(z))| ≥ min
(r,θ)∈[0, 1

2
]×[0,π]

|S(r, θ)|,

by using (4.15), (4.16), and (4.19) it follows that in B,∣∣∣∣U1(z)

z − β

∣∣∣∣ =
∣∣∣Q(z) + (β − β̃)R(z)

∣∣∣ ≥ ∣∣∣|Q(z)| − |(β̃ − β)R(z)|
∣∣∣ ≥ 3235

250
− |(β̃ − β)||R(z)|

≥ 3235

250
− |R(z)|

250
>

3235

250
− 3234.224489 . . .

250
> 0.

This concludes the proof.

Combining Lemmas 18 and 19 with the inequality in (4.9), we obtain the following propo-

sition.

Proposition 14. The functionU(z) has a unique (simple) root α insideB, where α ≈ 0.4889986317.

Proof. For the decomposition U(z) = U1(z) + U2(z), (4.9) together with Lemma 18 gives for

z ∈ ∂B

|U1(z)| ≥ 3

1000
> 0.00025 > |U2(z)|.

Hence, from Rouché’s theorem, inside B the function U(z) has the same number of roots (con-

sidered with multiplicity) as polynomial U1(z). From Lemma 19, we know that U1(z) has one

(simple) root inside B.

The only remaining step is the numerical computation of α, whose first ten digits turn out

to coincide with the constant β found in Lemma 19 as the root of U1(z) inside B. We again

decompose U(z):

U(z) =
∞∑
k=0

ukz
k =

500∑
k=0

ukz
k +

∞∑
k=501

ukz
k = Ũ1(z) + Ũ2(z).

Note that from our bound for |uk| (Lemma 17), for each z ∈ B we have

|Ũ2(z)| ≤
∞∑

k=501

|uk| |z|k ≤
∞∑

k=501

(
9

5

)k (
1

2

)k
= 10

(
9

10

)501

≤ 10−21. (4.21)
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Let us now consider

α′ =
550563513910285

1125899906842624
≈ 0.48899863172938484723

α′′ =
1101127027820571

2251799813685248
≈ 0.48899863172938529132.

These values were chosen using the bisection method such that

Ũ1(α′) = 2.708185805 . . . · 10−16 and Ũ1(α′′) = −4.953373282 . . . · 10−15.

From the bound of |Ũ2(z)| in (4.21), it is clear that U(α′) > 0 and U(α′′) < 0. Let α be the

unique root of U(z) in B, which by the Intermediate Value Theorem must be a real root in

(α′, α′′), and let ε ≡ α− α′ ≤ 10−14. Note that

1

α′
− 1

α
=

ε

α′(α′ + ε)
≤ ε

(α′)2
≤ 5 · 10−14.

Thus, we can use

α′ = 0.48899863172938484723

(α′)−1 = 2.0449954971518340953

to approximate α and α−1, respectively.

This completes the proof of Theorem 18.

4.2 Total Configurations

We now consider the total configurations as a random parameter which we will denote by Tn.

Note that this parameter depends again only on the shape of the tree and thus we can consider

τ to be embedded into the plane. In addition, in the Yule-Harding model, we will consider the

uniform model for the ranked plane binary trees. Note that

Tn
d
= TIn + T ∗n−In +Rn (4.22)

with T1 = 0, where equality holds in distribution and In is the size of the left subtree and

T ∗n is an independent copy of Tn. This holds for both uniform and Yule-Harding model. This

distributional recurrence follows directly from (4.3).

Notice that, for any phylogenetic tree τ , we have

Rτ ≤ Tτ ≤ nRτ . (4.23)
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The first part of the inequality is trivial since Rτ is one of the terms in the sum Tτ . The

second part of the inequality holds since the root configuration is an upper bound to the number

of ancestral configurations of any of the n− 1 internal nodes of τ . Thus, we have

E(Tn) ./ E(Rn) and Var(Tn) ./ Var(Rn).

In particular, we will show in Sections 4.2.3 and 4.2.2 that

E(Tn) ∼ c1E(Rn) and Var(Tn) ∼ c2Var(Rn)

for some constant c1, c2.

4.2.1 Limit Distribution of Total Configurations

Observe that from (4.23) we have

log(Tn) = log(Rn) +O(log n).

Thus, we have

E(log(Tn)) ∼ E(log(Rn)) and Var(log(Tn)) ∼ Var(log(Rn)).

Also, notice that as n→∞, we have

O(log n)√
Var(log(Rn))

→ 0.

This holds for both uniform and Yule-Harding model. Thus, we have the following result.

Theorem 19. Let Tn be the total configurations of phylogenetic trees of size n selected at ran-

dom under uniform (resp. Yule-Harding) model. Let µn = E (log (Tn)) and σ2
n = Var (log (Tn)).

Then, we have

µn ∼ µn and σ2
n ∼ σ2n

where µ ≈ 0.272 and σ2 ≈ 0.034 (resp. µ ≈ 0.351 and σ2 ≈ 0.008). Moreover,

log (Tn)− µn
σn

converges weakly to the standard normal distribution N (0, 1).
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4.2.2 Mean and Variance of Total Configurations under the Yule-Harding

Model

In this section, we derive the mean and variance of the number of total configurations under the

Yule-Harding model. We are going to use the results at the end of Section 1.2. Our result is as

follows.

Theorem 20. LetRn be the total configurations of a phylogenetic tree selected at random under

Yule-Harding model. Then, we have

E(Tn) ∼ 1

(1− e−2π
√

3/9)n
and Var(Tn) ∼ cn

where c = 2.0449954971.... Moreover, we have

ρ(Tn, Rn) ∼ 1.

Proof. Let us first derive the mean of Tn. By Lemma 5 and (4.22), we have

E(Tn) =
2

n− 1

n−1∑
j=1

E(Tj) + E(Rn). (4.24)

Consider the generating functions R(z) =
∑

n≥1 E(Rn)zn and T (z) =
∑

n≥1 E(Tn)zn. From

(4.24), we have

T ′(z) +
z + 1

z2 − z
T (z) = R′(z)− R(z)

z
. (4.25)

Set M(z) = (z−1)2

z
. Notice that M ′(z) = z+1

z2−zM(z). Thus, we have(
(z − 1)2

z
T (z)

)′
= (T (z)M(z))′

= T ′(z)M(z) +
z + 1

z2 − z
M(z)T (z)

=

(
R′(z)− R(z)

z

)
M(z).

Solving the differential equation, with initial condition [T (z)(z − 1)2/z]|z=0 = 0 since the first

nonzero term in the expansion of T (z) is the quadratic part, we have

T (z) =
z

(z − 1)2

∫ z

0

(
R′(x)− R(x)

x

)
M(x) dx.

From the proof of Theorem 18, as z → β, we have

R(z) ∼ 1

1− z
β

and R′(z) ∼ 1

α(1− z
β
)2
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where β = 1− e−2π
√

3/9 ≈ 0.702. Consequently, as z → β, we have(
R′(z)− R(z)

z

)
M(z) ∼ (β − 1)2

β

(
1

β(1− z
β
)2

)

Therefore, as z → β, we have

T (z) ∼ α

(β − 1)2

∫ z

0

(β − 1)2

β

(
1

β(1− x
β
)2

)
dx

∼
∫ z

0

1

β(1− x
β
)2
dx

∼ 1

1− z

β

.

Thus, E(Tn) = [zn]T (z) ∼ β−n.

Now, we find the variance of Tn. To compute for the variance, we need to consider TnRn

and T 2
n . Their distributional recurrences are given by

TnRn
d
= TInRInR

∗
n−In + TInRIn + TInR

∗
n−In + TIn + T ∗n−InRInR

∗
n−In + T ∗n−InRIn

+ T ∗n−InR
∗
n−In + T ∗n−In +R2

n, (4.26)

and

T 2
n

d
= T 2

In + (T ∗In)2 + 2TInT
∗
n−In + 2TnRn −R2

n. (4.27)

which follows directly from (4.4) and (4.22). Set

S(z) =
∑
n≥1

E(R2
n)zn,

V (z) =
∑
n≥1

E(TnRn)zn,

and

Q(z) =
∑
n≥1

E(T 2
n)zn.

Thus, from (4.26) and (4.27),

V ′(z) = V (z)

(
2R(z)

z
+

z + 1

z − z2

)
+

2T (z)R(z) + 2z
1−zT (z) + zS ′(z)− S(z)

z
(4.28)

Q′(z) +
z + 1

z2 − z
Q(z) =

2T (z)2 + 2zV ′(z)− 2V (z)− zS ′(z) + S(z)

z
(4.29)

We proceed in a similar manner as we did for T (z).
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We first consider V (z). Define the functions

P (z) =
2T (z)R(z) + 2z

1−zT (z) + zS ′(z)− S(z)

z
(4.30)

and

M1(z) =
(z − 1)2

z
exp

(∫ z

0

−R(x)

x
dx

)
.

Then, we have

V (z) =
1

M1(z)

∫ z

0

P (x)M1(x) dx. (4.31)

Notice that the dominant singularity of V (z) is located at α = 0.488998631729... which is

the dominant singularity of S(z), see proof of Proposition 14. Here, T (z) and R(z) are both

analytic in |z| < 1/2 which contains β. Thus, T (z) → T (α) and R(z) → R(α) as z → α. In

addition, we have the following as z → α

M1(z) ∼ k, S(z) ∼ 1

1− z
α

, and S ′(z) ∼ 1

α(1− z
α

)2

for some nonzero constant k. Plugging these expressions to (4.30), as z → α, we get

P (z) ∼
2T (α)R(α) + 2α

1−αT (α)

α
+

1

β(1− z
α

)2

∼ 1

α(1− z
α

)2

Finally, we have

V (z) ∼ 1

k

∫ z

0

1

α(1− x
α

)2
k dx

∼ 1

1− z
α

as z → α. Thus, E[TnRn] ∼ α−n.

Now, let us consider Q(z). Set

G(z) =
2T (z)2 + 2zV ′(z)− 2V (z)− zS ′(z) + S(z)

z
. (4.32)

which yields to

Q(z) =
1

M(z)

∫ z

0

G(x)M(x) dx.

Now, as z → α, we have

G(z) ∼ 1

α(1− z
α

)2
.

Consequently, as z → α, we have

Q(z) ∼ 1

1− z
α
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since M(z)→ k1 for some non-zero constant k1. Therefore, E(T 2
n) ∼ α−n.

Computing for the variance of Tn, we have

Var(Tn) = E(Tn)2 − E2(Tn)

∼ E(Tn)2.

Hence, Var(Tn) ∼ α−n = (2.0449954971...)n. See proof of Proposition 14 for more precise

value of α−1.

Finally, for the last part of the theorem. Notice that

Cov(Tn, Rn) = E(TnRn)− E(Tn)E(Rn) ∼ E(TnRn).

Thus,

ρ(Tn, Rn) =
Cov(Tn, Rn)√

Var(Tn)
√

Var(Rn)
∼ 1.

This completes the proof.

4.2.3 Mean and Variance of Total Configurations under the Uniform Model

In this section, we derive the mean and variance of the number of total configurations under the

uniform model. Our result is as follows.

Theorem 21. Let Tn be the total configurations of a random uniform phylogenetic tree of size

n. Then, we have

E(Tn) ∼
√

6

(
4

3

)n
and Var(Tn) ∼ c

(
4

7(8
√

2− 11)

)n
where c = 2

17
(15 + 11

√
2)

√
7(11−

√
2)

34
. Moreover, we have

ρ(Tn, Rn) ∼
1 +

√
2

2√
2

17
(15 + 11

√
2)

≈ 0.9003666874.

Proof. First, we compute for the mean of Tn. Observe that from (4.22) and Lemma 3, we have

E(Tn) = 2
n−1∑
j=1

Cj−1Cn−1−j

Cn−1

E(Tj) + E(Rn), (4.33)

where E[T1] = 0. Similarly, by (4.4) and Lemma 3, we have

E(Rn) =
n−1∑
j=1

Cj−1Cn−1−j

Cn−1

(E(Rj)E(Rn−j) + E(Rj) + E(Rn−j) + 1) . (4.34)
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with E(R1) = 0. Define the following generating function

T (z) =
∑
n≥1

Cn−1E(Tn)zn and R(z)
∑
n≥1

Cn−1E(Rn)zn.

Using (4.33) and (4.34), we have

T (z) = 2zC(z)T (z) +R(z) and R(z) = R2(z) + 2zC(z)R(z) + z2R(z)2,

where C(z) is the generating function of the Catalan numbers Cn. Solving for T (z) from the

two equations, we get

T (z) =
R(z)

1− 2zC(z)
=

√
1− 4z −

√
2
√

1− 4z − 1

2
√

1− 4z
.

Notice that the dominant singularity of T (z) is α = 3/6 which is the root of 2
√

1− 4z − 1.

Thus, as z → α, we have the asymtotic expansion

T (z) ∼ 1

2
−
√

3

2

√
1− 16z

3
.

By singularity analysis, we have

E(Tn) =
[zn]T (z)

Cn−1

∼

√
3
2

(16/3)n

2
√
πn3

4n−1√
πn3

=
√

6

(
4

3

)n
.

Now, let us compute for the variance of Tn. The method is similar but it involves more

functions.

Let R̃n = Rn + 1. The we have the following distributional recurrences

R̃n
d
= R̃InR̃

∗
n−In + 1;

(R̃n)2 d
= (R̃In)2(R̃∗n−In)2 + 2R̃InR̃

∗
n−In + 1;

TnR̃n
d
= TInR̃InR̃

∗
n−In + T ∗n−InR̃

∗
n−InR̃In + TIn + T ∗n−In + (R̃n)2 − R̃n;

(Tn)2 d
= (TIn)2 + (T ∗n−In)2 + 2TInT

∗
n−In + 2TnRn − (Rn)2.
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Now let us consider their corresponding generating functions

R̃(z) =
∑
n≥1

Cn−1E(R̃n)zn =
∑
n≥1

Cn−1E(Rn)zn +
∑
n≥1

Cn−1z
n = R(z) + zC(z)

S̃(z) :=
∑
n≥1

Cn−1E(R̃2
n)zn

S(z) :=
∑
n≥1

Cn−1E(R2
n)zn =

∑
n≥1

Cn−1E(R̃2
n − 2R̃n + 1)zn

=
∑
n≥1

Cn−1E(R̃2
n − 2(Rn + 1) + 1)zn

=
∑
n≥1

Cn−1E(R̃2
n)zn − 2

∑
n≥1

Cn−1E(Rn)zn −
∑
n≥1

Cn−1z
n

= S̃(z)− 2R(z)− zC(z)

Ṽ (z) :=
∑
n≥1

Cn−1E(TnR̃n)zn

V (z) :=
∑
n≥1

Cn−1E(TnRn)zn =
∑
n≥1

Cn−1E(Tn(R̃n − 1))zn

=
∑
n≥1

Cn−1E(TnR̃n)zn −
∑
n≥1

Cn−1E(Tn)zn = Ṽ (z)− T (z)

U(z) :=
∑
n≥1

Cn−1E(T 2
n)zn.

Using the distributional recurrence above, we have

S̃(z)− z = S̃(z)2 + 2R̃(z)2 + z2C(z)2

Ṽ (z) = 2Ṽ (z)R̃(z) + 2zC(z)T (z) + S̃(z)− R̃(z)

U(z) = 2zC(z)U(z) + 2T (z)2 + 2V (z)− S(z).

With the help of computing software, the above equations can be solved as follows. First,

we know R(z) and C(z) and thus we get an expression for R̃(z). With R̃(z), we can solve for

S̃(z). Next, we can solve simultaneously the expressions for S(z) and Ṽ (z). Finally, we can

compute for U(z). Using this algorithm, we have

V (z) =
−
√

2r − 1 + r
(
−r +

√
2r − 1−

√
−r + 4

√
2r − 1− 1 + 3

)
− 1

2r
√

2r − 1
;

U(z) =
1

2

− 1

r3
+
−2
√
−r+4

√
2r−1−1√

2r−1
+
√
−2r + 4

√
2r − 1− 1 + 4√

2r−1
+ 3

r
− 6√

2r − 1
+ 1

 ,

where r =
√

1− 4z. Both U(z) and V (z) have dominant singularity at β = 7(8
√

2 − 11)/16

which is the root of −r + 4
√

2r − 1 − 1. Finally, using singularity analysis and with help of
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computing software, we have

E(TnRn) =
[zn]V (z)

Cn−1

∼

(
1 +

√
2

2

)√
7(11−

√
2)

34

[
4

7(8
√

2− 11)

]n
;

E(T 2
n) =

[zn]U(z)

Cn−1

∼ 2

17
(15 + 11

√
2)

√
7(11−

√
2)

34

[
4

7(8
√

2− 11)

]n
.

Therefore, Var(Tn) = E(T 2
n)− E2(Tn) ∼ E(T 2

n).

For the last part of the theorem, we first compute for the covariance of Tn and Rn. Thus, we

have

Cov(Tn, Rn) = E(TnRn)− E(Tn)E(Rn) ∼ E(TnRn).

Therefore,

ρ(Tn, Rn) =
Cov(Tn, Rn)√

Var(Tn)
√

Var(Rn)
∼

1 +

√
2

2√
2

17
(15 + 11

√
2)

This completes the proof.
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Chapter 5

Conclusion and Outlook

In the last three chapters of this thesis, we have seen different applications of evolutionary struc-

tures such as resource allocation, group formation process and genetic analysis. We also have

shown several results about these evolutionary structures which enhance the existing researches

involving phylogenetic trees. Despite these recent progresses, scientists are still facing a lot of

open problems which still makes phylogenetics an active field of study. Algorithms are still

needed in order to help us solve some of the problems in phylogenetics. For example, how

to deal with more general types of parameters (in this thesis we mainly considered parameters

which are additive in nature or have a simple recursion structure) or how to deal with the β-

splitting model (Chapter 2 does not cover β ≤ −1 because of the lack of tools to solve this

case). Apart from studying phylogenetic trees, an important recent trend are generalizations

of phylogenetic trees. One such generalization are phylogenetic networks, see (Huson et al.,

2010).

Now, will give some post-analysis on the topics of this thesis. We will follow the flow of

the thesis in the discussion. So, we begin with the Shapley values.

In recent years, different versions of the Shapley value have appeared in different articles,

see (Hartmann, 2013; Haake et al., 2008; Fuchs and Jin, 2015), including unrooted, rooted,

and modified rooted Shapley values. Fuchs and Jin (2015) showed that under the uniform and

Yule-Harding model the correlation coefficient between rooted and modified Shapley value is

asymptotic to 1 which means that the two values are basically the same. One of the goals of

this thesis was to determine the correlation coefficient between the unrooted and rooted Shapley

value under the β-splitting model.

In this thesis, we have shown that the correlation coefficient of the unrooted and rooted
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Shapley values under the β-splitting model tends to 1 for β > −1. Unfortunately, the most

practical case which is β = −1 (see (Blum and François, 2006)) is not covered in this study.

Also, the uniform model which is the case where β = −3/2 is also not covered. This makes

further studies on this topic necessary.

We will briefly explain why the method in this thesis does not provide a result for β ≤ −1.

In particular, we try to consider β = −1. In the method of proof, we bound the parameters

using the asymptotic behaviour of the splitting probability qn(j). Thus, looking at the splitting

probability when β = −1, we have

qn(j) =
n

Hn−1

· 1

j(n− j)
for 1 ≤ j ≤ n− 1,

whereHn =
∑n

k=1 1/k is the n-th Harmonic number. Using the same methods as in Section 2.1,

we obtain the following bounds

E(Sn) = O(n(log n)2) and O(n2(log n)4)

Applying the methods in Section 2.3 to the third term of (2.10), we have

E(E((Z [3]
n )2|Yn)) = O

(
(log n)4

n2Hn−1

n−1∑
j=1

j2

(n− j)3

)
= O((log n)3).

This explains why the result does not work since this term is required to tend to 0. Note that

the above term is expected to be the largest of the terms in Proposition 2.10 since we pick a

leaf uniformly at random which means that the leaf is most likely located at the larger subtree.

Thus, the value of Yτ is large while Xτ is small. With this, there is a need to develop a new

method to deal with β ≤ −1, especially β = −1.

Finally, note that the Shapley values are defined via the weights of the edges of the phylo-

genetic tree. In this thesis, we only considered the case when the weights are all equal to 1. So,

one may look at other cases when the weights are not equal. But then, one need to develop a

random model for the weights of the edges (and hope that this model has practical applications).

So far only models for constructing trees with weights equal to 1 are available. It would be more

interesting to have weights depending on the number of leaves present under the edge since we

are looking at distributions of resources (more species need more resource) but how one would

construct such a model is an open problem.

Now, let us discuss the group formation process.

In this thesis, we considered the number of clades Nn, clades with fixed size N [m]
n , and size

of the maximal clade Mn in the extra clustering model. We have used a combinatorial approach
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to find the limit distribution of these parameters under the uniform model which covers all

possible cases for the extra-clustering model. So, we will try to compare our results with the

existing results under the Yule-Harding model, see (Durand and François, 2010; Drmota et al.,

2014, 2016).

We start with Nn. In (Durand and François, 2010), the authors computed the mean for Nn

which is given by

E(Nn) =



c(p)

Γ(2(1− p))
n1−2p, if 0 ≤ p < 1/2;

log n

2
, if p = 1/2;

p

2p− 1
, if 1/2 < p < 1,

where

c(p) =
1

e2(1−p)

∫ 1

0

(1− t)−2pe2(1−p)t (1− (1− p)t2
)

dt.

In contrast to the uniform case which has finite mean for all 0 ≤ p < 1, the Yule-Harding model

has only finite mean when 1/2 < p < 1. In addition to this, higher moments and limit laws

were discussed in (Drmota et al., 2014, 2016). They showed that Nn has a continuous limit

law when p = 0, for 0 < p < 1/2 has a mixture of discrete and continuous limit law, and has

always a discrete law when p ≥ 1/2. On the other hand, in our situation, the limit law is always

discrete for 0 ≤ p < 1. Moreover, we have convergence of all moment for all the cases while in

the Yule-Harding model, moment convergence only holds when 0 < p < 1/2 and 1/2 < p < 1.

For N [m]
n , in the Yule-Harding model only a result for the mean was proved in previous

work. More precisely, Durand and François (2010) showed that the mean is of order n1−2p for

0 ≤ p < 1/2. This leaves us with finding higher moments and the limit distribution for N [m]
n .

For this, the tools from (Drmota et al., 2014, 2016) should be helpful.

A result for Mn under the Yule-Harding is not available in the literature so far. This may be

due to the fact that Mn is not additive and thus most of our methods do not apply for Mn. Thus,

we need to develop new methods in order to investigate such parameters.

Finally, we discussed ancestral configurations. Here, we considered the number of root

configurations Rn and the total number of configurations Tn. Disanto and Rosenberg (2017)

derived the mean and variance of Rn under the uniform model. In this thesis, we filled all

remaining gaps by deriving the limit laws, mean and variance for both Rn and Tn under the

uniform and Yule-Harding model. However, recall that we only considered a matching gene

tree and species tree, so one can work on the non-matching case. There are still recursive ways
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to obtain results in such a case but the computations are getting more messy, see (Wu, 2012).
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