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Abstract

The Sackin and Colless indices are two widely-used metrics for
measuring the balance of trees and for testing evolutionary mod-
els in phylogenetics. This short paper contributes two results about
the Sackin and Colless indices of trees. One result is the asymp-
totic analysis of the expected Sackin and Colless indices of tree
shapes (which are full binary rooted unlabelled trees) under the
uniform model where tree shapes are sampled with equal probabil-
ity. Another is a short direct proof of the closed formula for the
expected Sackin index of phylogenetic trees (which are full binary rooted
trees with leaves being labelled with taxa) under the uniform model.
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1 Introduction

The Sackin [1, 2] and Colless [3] indices are two widely-used metrics for mea-
suring the balance of phylogenetic trees and testing evolutionary models [4–9].
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2 Sackin and Colless indices

Phylogenetic trees are binary rooted trees in which each internal node has two
children and only the leaves are labelled one-to-one with taxa. For a phyloge-
netic tree, its Sackin index is defined as the sum over its internal nodes of the
number of leaves below that node, whereas its Colless index is defined as the
sum over its internal nodes of the balance of that node, where the balance of
a node is defined to be the difference in the number of leaves below the two
children of that node. Because of their wide applications, the two tree balance
metrics have been studied in the past decades (see the recent comprehensive
survey [10]).

The Sackin and Colless indices of a random phylogenetic tree have been
investigated under the Yule-Harding model (where ordered tree shapes, i.e.,
tree shapes with the children of each non-leaf node having a left-to-right order,
are generated using a birth process, the leaves of these ordered tree shapes
are labeled according to a permutation on the taxa which is chosen uniformly
at random, and then the left-to-right order of the children of non-leaf nodes
is disregarded) and the uniform model (where trees are sampled with equal
probability) [9, 11–13]. The expected Sackin and Colless indices of a phyloge-
netic tree are proved to be asymptotic to

√
πn3/2 under the uniform model

and n log n under the Yule-Harding model [12, 13]. Recently, Mir et al. [14]
discovered surprisingly that the expected Sackin index of a phylogenetic tree
is simply

4n−1n!(n− 1)!

(2n− 2)!
− n (1)

under the uniform model. An alternative proof of this closed formula was
given by King and Rosenberg [15]. Both asymptotic and exact results on the
variances of the Sackin and Colless indices have also been reported [9, 12, 13,
16].

It is not hard to see that the Sackin index of a binary tree is actually
equal to the sum of the depths of all its leaves [17]. Therefore, the Sackin
index and the tree height have also been studied for other types of trees in the
combinatorics and theoretical computer science literature [18–21].

In this paper, we focus on two questions about the Sackin and Colless
indices. The first question is what the expected Sackin and Colless indices of a
random binary tree shape are under the uniform model [22]. Here, tree shapes
(also called Otter or Polya trees) are binary rooted trees with unlabeled leaves
where each internal node has two children. Although there is increasing interest
in tree balance indices for tree shapes in the study of phylodynamic problems
[23, 24], to the best of our knowledge, the statistical properties of these two
indices and other tree balance indices have not been formally studied for tree
shapes [10]. Here, we prove that the expected Sackin and Colless indices of
a tree shape with n leaves are asymptotic to

√
πλ−1n3/2 under the uniform

model, where λ ≈ 1.1300337163.
Given that the closed formula (1) for the expected Sackin index of a phy-

logenetic tree under the uniform model is rather simple, the second question
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is whether a direct proof exists for the formula or not. We answer this ques-
tion by using a simple recurrence for the Sackin index that is derived using the
fact that all the phylogenetic trees on n taxa can be enumerated by inserting
the n-th taxon into every edge of the phylogenetic trees on n − 1 taxa [25].
Recently, this technique was used by Zhang for computing the sum over all
nodes of the number of the descendants of that node and counting the number
of tree-child networks with one reticulation [26].

2 Basic definitions and notation

2.1 Phylogenetic trees and shapes

A tree shape is a full binary rooted tree in which all nodes are unlabeled. A
phylogenetic tree on n taxa is a full binary rooted tree with n leaves in which
its leaves are uniquely labeled with a taxon and each of the n − 1 non-leaf
nodes has two children.

Let T be a phylogenetic tree on n taxa or a tree shape. We use V0(T ) to
denote the set of all non-leaf nodes of T and V (T ) to denote the set of all
nodes. A leaf x is said to be below a node u in T if the unique path from the
root to x passes through u. We use ℓT (u) to denote the number of leaves below
u in T . Also, we set ℓT (u) := 1 if u is a leaf.

Let u ∈ V0(T ). The balance of u is defined to be |ℓT (v) − ℓT (w)|, where v
and w are the two children of u. We use δT (u) to denote the balance of u.

For each non-root u ∈ V (T ), we use p(u) to denote the parent of u in T .

2.2 Sackin and Colless indices

Definition 1 The Sackin index of a tree shape or a phylogenetic tree T is defined
to be

∑
u∈V0(T ) ℓT (u), and denoted by S(T ).

Definition 2 The Colless index of a tree shape or a phylogenetic tree T is defined
to be

∑
u∈V0(T ) δT (u), and denoted by C(T ).

The expected Sackin and Colless indices of a tree shape under the uniform
model are respectively defined as:

ESIsh(n) :=
1

bn

∑
T∈T (n)

S(T )

and

ECIsh(n) :=
1

bn

∑
T∈T (n)

C(T ),

where T (n) denotes the set of all tree shapes with n leaves and bn := |T (n)|.
Although there does not exist a closed formula for bn, bn can be computed
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using the following recurrence formulas for n > 1 (A001190 in the On-Line
Encyclopedia of Integer Sequences1):

bn =
∑

1≤k<n/2

bkbn−k +

0, if n is odd;
1

2
bn/2(bn/2 + 1), if n is even.

(2)

Equivalently, the generating function B(z) :=
∑

i biz
i satisfies the following

equation:

B(z) = z +
1

2

(
B(z)2 +B(z2)

)
. (3)

The expected Sackin index of a phylogenetic tree under the uniform model
is defined similarly, that is,

ESIp(n) :=
1

an

∑
P∈P(n)

S(P ),

where P(n) denotes the set of all phylogenetic trees on n taxa and an :=

|P(n)| = (2n−2)!
2n−1(n−1)! (see [17]).

3 Asymptotic analysis of the expected Sackin
and Colless indices for tree shapes

Recall that T (n) denotes the set of all possible tree shapes with n leaves. Let
Sn :=

∑
T∈T (n) S(T ), which is the sum of the Sackin index over all tree shapes

with n leaves. Obviously, S1 = 0 and S2 = 2.
For n > 2, T (n) can be obtained by combining every pair of tree shapes

T ′ ∈ T (k) and T ′′ ∈ T (n−k), where k can range from 1 to ⌊n/2⌋. For a specific
integer k ≤ n/2, T ∈ T (k) and T ′ ∈ T (n − k), S(T ) = n + S(T ′) + S(T ′′)
for the tree shape T obtained by combining T ′ and T ′′, as there are n leaves
below the root of T .

Using the facts mentioned in the previous paragraph and Eqn. (2), we
obtain that:

Sn =
∑

1≤k<n/2

 ∑
T∈T (k)

∑
T ′∈T (n−k)

(n+ S(T ) + S(T ′))


=

∑
1≤k<n/2

nbkbn−k +
∑

T∈T (k)

∑
T ′∈T (n−k)

(S(T ) + S(T ′))


= n

∑
1≤k<n/2

bkbn−k

1https://oeis.org/

https://oeis.org/
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+
∑

1≤k<n/2

 ∑
T∈T (k)

∑
T ′∈T (n−k)

S(T ) +
∑

T∈T (k)

∑
T ′∈T (n−k)

S(T ′)


= nbn +

∑
1≤k<n/2

(bn−kSk + bkSn−k)

= nbn +
∑

1≤k<n

Skbn−k, (4)

for odd n and

Sn = nbn +
∑

1≤k<n/2

 ∑
T∈T (k)

∑
T ′∈T (n−k)

(S(T ) + S(T ′))


+

∑
T,T ′∈T (n/2):T ̸=T ′

(S(T ) + S(T ′)) +
∑

T∈T (n/2)

2S(T )

= nbn +
∑

1≤k<n/2

(bn−kSk + bkSn−k) +

 ∑
T∈T (n/2)

(bn/2 − 1)S(T )

+ 2Sn/2

= nbn + Sn/2 +
∑

1≤k<n

Skbn−k (5)

for even n.

3.1 The asymptotic value of ESIsh(n)

It is unknown whether or not one can derive a closed formula for Sn from
Eqn. (4)-(5). However, an asymptotic analysis of Sn follows from the classical
asymptotic analysis of bn from Eqn. (2). In order to recall the latter, we need
the notion of ∆-analyticity. First, a ∆-domain with parameters δ and ϕ is a
domain in the complex plane of the form:

∆ := {z ∈ C : |z| < 1 + δ, | arg(z − 1)| > ϕ}

with δ > 0 and 0 < ϕ < π/2; see Definition VI.1 in [27]. A function is called
∆-analytic if it is analytic in such a ∆-domain.

Lemma 1 ([19]) The convergence radius ρ of the generating function B(z) of bn
in Eqn. (3) satisfies 1/4 ≤ ρ ≤ 1/2, where ρ + B(ρ2)/2 = 1/2. Moreover, B(z) is
∆-analytic and satisfies as z → ρ in a ∆-domain:

B(z) = 1− λ
√

1− z/ρ+O(1− z/ρ), λ :=
√

2ρ+ 2ρ2B′(ρ2). (6)

Thus,

bn ∼ λ

2
√
πn3/2ρn

, (n → ∞). (7)
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Remark 1 ρ and λ can be computed up to very high precision, e.g.,

ρ = 0.40269750367 · · · and λ = 1.1300337163 · · · .

The computation is done as follows: first, Eqn. (2) is used to compute a finite number
of terms b̃n of bn that are used to set up a polynomial B̃(z) which approximates
B(z); then, find ρ̃ such that ρ̃+ B̃(ρ2)/2 = 1/2. Clearly, ρ̃ approximates ρ and this
approximation can be made arbitrarily precise; also an approximation of λ can be
derived from it via Eqn. (6).

Remark 2 The asymptotic expansion in Eqn. (7) follows from the singularity expan-
sion in Eqn. (6) by the transfer theorems (see Theorem VI.3 and Corollary VI.1
in [27]) which assert that if A(z) is ∆-analytic with A(z) ∼ c(1 − z/ρ)−α, where
c, ρ ∈ R \ {0} and α ∈ C \ {0,−1,−2, . . .}, then [zn]A(z) ∼ [zn]c(1 − z/ρ)−α ∼
cρ−nnα−1/Γ(α), where [zn]f(z) denotes the n-th coefficient in the Maclaurin series
of f(z) and Γ(z) is the gamma function. Indeed, set A(z) := B(z)− 1. Then, by (6),
we have A(z) ∼ −λ

√
1− z/ρ and thus

bn = [zn]A(z) ∼ −λ

Γ(−1/2)n3/2ρn
=

λ

2
√
πn3/2ρn

which is (7). (In the last step, we used that Γ(−1/2) = −2
√
π.)

Remark 3 More generally, the process of showing that a genearting function A(z) is
∆-analytic, deriving the expansion A(z) ∼ c(1−z/ρ)−α as z → ρ and then using the
transfer theorems to obtain the asymptotics of [zn]A(z) is called singularity analysis;
see Chapter VI in [27].

Remark 4 Singularity analysis is closed under several operations on functions; see
Section VI.10 in [27]. For instance, if singularity analysis can be applied to A(z), it
can also be applied to A′(z), where the singularity expansion of A′(z) is obtained
from the one of A(z) by term-by-term differentiation. E.g., B′(z) from the previous
lemma is also ∆-analytic with singularity expansion as z → ρ

B′(z) ∼ λ

2ρ
· 1√

1− z/ρ
, (8)

from which the asymptotic expansion of [zn]B′(z) follows by the transfer theorems.
(Of course, since [zn]B′(z) = (n+1)[zn+1]B(z), this expansion is just the expansion
in Eqn. (7) multiplied by n/ρ.)

Theorem 2 Under the uniform model, the expected Sackin index of a tree shape with
n leaves, ESIsh(n), is asymptotic to π1/2λ−1n3/2, where λ is given in Eqn. (6).

Proof The recurrence formulas in Eqn. (4)-(5) translate into the following equation
for the generating function S(z) :=

∑
i Siz

i of Sn:

S(z) = zB′(z) + S(z)B(z) + S(z2) (9)
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since the generating function of
∑

1≤k<n Skbn−k is the product S(z)B(z) and∑
n≥1

nbnz
n = zB′(z),

∑
n even

Sn/2z
n = S(z2).

Indeed,

S(z) =
∑
n≥1

Snz
n =

∑
n≥1

nbnz
n +

∑
n≥1

 ∑
1≤k<n

Skbn−k

 zn +
∑

n even

Sn/2z
n

= zB′(z) + S(z)B(z) + S(z2)

which gives (9).
Next, by rewriting Eqn. (9) into

S(z) =
zB′(z) + S(z2)

1−B(z)
,

we see that the radius of convergence of S(z) is equal to ρ. (Because B(z) and B′(z)
both have radius of convergence equal to ρ and S(z2) is analytic at ρ since 0 < ρ < 1).
Moreover, from Eqn. (6) and the closure properties of singularity analysis (Remark 4
above), we obtain that S(z) is ∆-analytic and satisfies as z → ρ in a ∆-domain:

S(z) ∼ ρ(λ/2ρ)(1− z/ρ)−1/2 + S(ρ2)

λ
√

1− z/ρ+O(1− z/ρ)
∼ 1

2
· 1

1− z/ρ
,

where we used Eqn. (8) and that S(z2) is analytic at ρ.
By the transfer theorems (see Remark 2), we obtain:

Sn ∼ 1

2
[zn](1− z/ρ)−1 ∼ 1

2ρn
, (n → ∞) (10)

and thus

ESIsh(n) =
Sn

bn
∼ 1/(2ρn)

λ/
(
2
√
πn3/2ρn

) =
√
πλ−1n3/2, (n → ∞)

using Eqn. (7). This proves the claim. □

3.2 The asymptotic value of ECIsh(n)

Next, we derive the asymptotic value of ECIsh(n). First, for each internal
node u of a tree, we use c1(u) and c2(u) to denote the two children of u. We
have that ℓ(u) = ℓ(c1(u)) + ℓ(c2(u)) and thus δ(u) = |ℓ(c1(u)) − ℓ(c2(u))| =
ℓ(u) − 2min(ℓ(c1(u)), ℓ(c2(u)). From this, it follows that for each tree shape
T , D(T ) := S(T )− C(T ) = 2

∑
u∈V0(T ) min(ℓ(c1(u)), ℓ(c2(u)).

Defining

Dn :=
1

2

∑
T∈T (n)

D(T ),

we obtain:
Cn =

∑
T∈T (n)

C(T ) = Sn − 2Dn. (11)

Since the integer subsets {k : 1 ≤ k < n/2} and {k : 1 ≤ k ≤
n/2} are the same and

∑
1≤k<n/2 bn−kDk =

∑
n/2≤n−k<n bn−kDn−(n−k) =∑

n/2≤k<n bkDn−k for odd n, we have the following recurrence formula:
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Dn =
∑

1≤k<n/2

 ∑
T∈T (k)

∑
T ′∈T (n−k)

(D(T ) +D(T ′) + k)


=

∑
1≤k<n/2

kbkbn−k +
∑

1≤k<n/2

(bn−kDk + bkDn−k)

=
∑

1≤k≤n/2

kbkbn−k +
∑

1≤k<n

Dkbn−k, for odd n. (12)

We now consider the case when n is even. Since each shape with n/2 leaves
can form exactly bn/2 − 1 shape pairs with all bn/2 − 1 other shapes, we have
that ∑
T,T ′∈T (n/2):T ̸=T ′

(D(T ) +D(T ′)) =
∑

T∈T (n/2)

(bn/2−1)D(T ) = (bn/2−1)D(n/2).

We also have that, for even n,∑
1≤k<n/2

(bn−kDk + bkDn−k) + bn/2Dn/2 =
∑

1≤k<n

bn−kDk.

Therefore,

Dn =
∑

1≤k<n/2

 ∑
T∈T (k)

∑
T ′∈T (n−k)

(D(T ) +D(T ′) + k)


+

∑
T,T ′∈T (n/2):T ̸=T ′

(D(T ) +D(T ′) + n/2) +
∑

T∈T (n/2)

(2D(T ) + n/2)

=
∑

1≤k<n/2

kbkbn−k +
∑

1≤k<n/2

(bn−kDk + bkDn−k)

+

(
(bn/2 − 1)Dn/2 +

(
bn/2
2

)
n

2

)
+ 2Dn/2 +

n

2
bn/2

=
∑

1≤k≤n/2

kbkbn−k +
∑

1≤k<n

Dkbn−k − n

2

(
bn/2
2

)
+Dn/2, for even n.

(13)

We first need a technical lemma for:

Fn :=
∑

1≤k≤n/2

kbkbn−k +

0, if n is odd;

−n

2

(
bn/2
2

)
, if n is even.
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Lemma 3 We have Fn = O
(
n−1ρ−n

)
.

Proof By using Eqn. (7),

Fn = O

ρ−n
∑

1≤k≤n/2

k−1/2(n− k)−3/2 + n−2ρ−n


= O

(
n−1ρ−n

∫ 1/2

0
x−1/2(1− x)−3/2dx+ n−2ρ−n

)
= O

(
n−1ρ−n + n−2ρ−n

)
= O

(
n−1ρ−n

)
,

where in the second step, we approximated the sum by an integral. □

Now, define:

D̃n := Kn−1ρ−n +
∑

1≤k<n

D̃kbn−k +

{
0, for n is odd;

D̃n/2, for n is even,
(14)

where K is the implied O-constant from the last lemma. The reason for con-
sidering this sequence is that it (a) majorizes Dn, namely, Dn ≤ D̃n (which is
easily proved by induction) and (b) its asymptotics can derived with similar
tools as used in the proof of Theorem 5.

Lemma 4 We have,

D̃n ∼ K

λ
√
π
n−1/2(logn)ρ−n, (n → ∞).

Consequently, Dn = O
(
n−1/2(logn)ρ−n

)
.

Proof Let D̃(z) :=
∑

i D̃iz
i be the generating function of D̃n. Then, the recurrence

in Eqn. (14) translates into

D̃(z) = K log
1

1− z/ρ
+ D̃(z)B(z) + D̃(z2) (15)

since ∑
n≥1

Kn−1ρ−nzn = K log
1

1− z/ρ

and the rest of the terms in (15) are explained as in the derivation of Eqn. (9).
Solving for D(z) gives:

D̃(z) =

K log
1

1− z/ρ
+ D̃(z2)

1−B(z)
.
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Sackin Index    Colless Index    

ESI
Asymptotic    

ECI
Asymptotic    

Fig. 1 The exact and asymptotic values of the expected Sackin (left) and Colless (right)
indices.

Thus, from Eqn. (6), D̃(z) satisfies as z → ρ in a ∆-domain:

D̃(z) ∼
K log

1

1− z/ρ
+ D̃(ρ2)

λ
√

1− z/ρ+O(1− z/ρ)
∼ K

λ
·
log

1

1− z/ρ√
1− z/ρ

from which the claimed result follows by the transfer theorems (which also work with
log-factors; see Theorem VI.3 in [27]). □

Now from Eqn. (10), Eqn. (11) and Lemma 4, we have the following result.

Theorem 5 Under the uniform model, the expected Colless index of a tree shape
with n leaves, ECIsh(n), is asymptotic to π1/2λ−1n3/2.

3.3 Visualization on the asymptotic analyses

The exact and asymptotic values of ESIsh(n) and ECIsh(n) were computed
and compared for n up to 700 (Figure 1). Here, For ESIsh(n), the exact values
were computed using the formulas in Eqn. (4)-(5) and the asymptotic values
were computed using the formula in Theorem 2. For ECIsh(n), the exact val-
ues were computed using the formulas in Eqn. (11)-(13) and the asymptotic
values were computed using Theorem 5. The comparison indicates that the
asymptotic value

√
πλ−1n3/2 is a very good approximation to the Sackin index

even for a small number n. However, the asymptotic value overestimates the
Colless index with a relatively large margin. The large margin is due to the
fact that ESIsh(n)− ECIsh(n) = 2D(n)/b(n) is of the order n log n according
to our proof; however, the relative error will tend to 0 with a speed of at least
log n/

√
n.

4 The expected Sackin index for phylogenetic
trees

Mir et al. discovered the following simple closed formula for the expected
Sackin index for a phylogenetic tree under the uniform model.
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44

1

4

4

n+1

u

(A)                                                                               (B)

Fig. 2 (A) Illustration of the process of generating phylogenetic trees on n+1 taxa through
inserting Leaf n+ 1 in each edge of a phylogenetic tree on taxa {1, 2, · · · , n} for n = 3. (B)
After Leaf n+ 1 is attached onto the edge entering the node u, the number of leaves below
the parent of n+1 in the obtained tree Q is equal to 1 plus that of u in the original tree P ,
i.e., 1 + ℓP (u)

.

Theorem 6 ([14]) For any n, ESIp(n) =
4n−1n!(n−1)!

(2n−2)!
− n.

An alternative proof was presented in [15] recently. Here, we will present
a short direct proof using the following enumeration of phylogenetic trees
(see [25] for example):

Assume that there is an open edge entering the root of each phylogenetic tree.
P(n+1) can be obtained from P(n) by attaching Leaf n+1 on each of the 2n− 1
edges of every tree of P(n) (Figure 2.A).

Let S
(p)
n :=

∑
P∈P(n) S(P ). Note that S

(p)
n = ESIp(n) × an, where an =

|P(n)|. For each P ∈ P(n), we useA(P ) to denote the set of 2n−1 phylogenetic
trees on n+ 1 taxa that are obtained from P by attaching Leaf n+ 1 on each
of the 2n− 1 tree edges of P . Then,

S
(p)
n+1 =

∑
P∈P(n)

∑
Q∈A(P )

S(Q). (16)

Consider a tree Q ∈ A(P ). Note that Leaf n+1 and its parent are the only
nodes of Q that are not found in P . Assume that Q is obtained by attaching
Leaf n + 1 to the edge e that enters u in P . The number of leaves below the
parent of Leaf n + 1 is 1 + ℓP (u) in Q (Figure 2.B). Therefore, the amount
contributed by the parents of Leaf n+ 1 to the sum

∑
Q∈A(P ) S(Q) is:

∑
u∈V (P )

(1 + ℓP (u)) = (2n− 1) +
∑

u∈V (P )

ℓP (u)

= (2n− 1) + n+
∑

u∈V0(P )

ℓP (u)

= 3n− 1 + S(P ), (17)
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where the n in the second expression is the sum of ℓP (u) (which is 1) over all
the n leaves u in P and V (P ) and V0(P ) are the set of nodes and non-leaf
nodes, respectively, in P ; see Section 2.1.

For w ∈ V (P ), we have either ℓP (w) = ℓQ(w) or ℓP (w) = ℓQ(w) + 1.
Furthermore, the latter holds if and only if Q is obtained by attaching Leaf
n + 1 to an edge below w in P . Since there are 2ℓP (w) − 2 edges below w in
P , thus ℓQ(w) = ℓP (w)+1 for exactly 2ℓP (w)− 2 trees Q of A(P ). Therefore,∑

Q∈A(P )

S(Q) = (2n− 1)S(P ) + (S(P ) + (3n− 1)) +
∑

w∈V0(P )

(2ℓP (w)− 2)

= 2nS(P ) + (3n− 1) + 2S(P )− 2|V0(P )|
= 2(n+ 1)S(P ) + (n+ 1).

Adding n + 1 to each term in the left-hand side of the above equality, which
can be considered as the contribution of the n+ 1 leaves, we further have:∑

Q∈A(P )

(S(Q) + (n+ 1)) = 2(n+ 1)S(P ) + (n+ 1) + (2n− 1)(n+ 1)

= 2(n+ 1) (S(P ) + n) .

By Eqn. (16), we obtain the following simple recurrence formula:

S
(p)
n+1 + (n+ 1)an+1 =

∑
P∈P(n)

∑
Q∈A(P )

(S(Q) + (n+ 1))

=
∑

P∈P(n)

2(n+ 1) (S(P ) + n)

= 2(n+ 1)
(
S(p)
n + nan

)
. (18)

Since S
(p)
2 = 2 and a2 = 1, Eqn. (18) implies that S

(p)
n = 2n−1n!− nan and

ESIp(n) =
S
(p)
n

an
=

4n−1n!(n− 1)!

(2n− 2)!
− n

Theorem 6 is proved.

5 Conclusion

In this short paper, we contributed two results to the study of the Sackin
and Colless indices. We have proved that the asymptotic value of Sackin and
Colless indices are the same for tree shapes under the uniform model. The
same phenomenon was also observed for phylogenetic trees under the uniform
model; see [13]. Thus, our result is expected since tree shapes under the uniform
model are known to behave similar to phylogenetic trees under the uniform



Springer Nature 2021 LATEX template

Sackin and Colless indices 13

model; see the discussion in the introduction of [19]. In particular, the average
height of phylogenetic trees and binary tree shapes with n leaves are both
asymptotically equal to 2λ−1

√
πn (see [18] and [19]).

We also presented a short direct proof of the closed formula for the expected
Sackin index of phylogenetic trees under the uniform model. The proof is based
on a tree enumeration approach that is different from one used in [14] and
[15]. This technique was also used by Goh [28] to derive a short proof of the
closed formula for the expected total cophenetic index of a phylogenetic tree
under the uniform model that was introduced in [14] (see also [10]). It is an
interesting problem whether or not the proof technique in Section 4 can be
used to investigate other tree balance indices (such as those given in the survey
paper [10]).
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