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Abstract

Shape parameters, e.g., balance indices, of evolutionary trees have been extensively studied un-
der the Yule model in phylogenetics. Independently, many of the same parameters have also been
studied for random binary search trees in computer science, where they measure the running time of
algorithms. In fact, under these two models, these parameters have the same distribution, resulting
in many identical discoveries. In this survey, we explain these connections and introduce some of
the tools which have been used in computer science to derive stochastic results for shape parameters.

1 Introduction

The Yule model (or, more precisely, Yule-Harding-Kingman model) is one of the simplest and most basic
random models for evolutionary trees. It produces random evolutionary trees whose properties have
been extensively studied via shape parameters. These parameters take only the shape of the evolutionary
tree into account and thus can be investigated for any binary tree model, for instance for random binary
search trees. In fact, many of the shape parameters for evolutionary trees under the Yule model have
also independently been studied in computer science for the latter model, where they share the same
distribution. The goal of this survey is to explain these connections, survey some of the tools which have
been used in computer science, and show some of the results which have been proved with these tools
(and which in turn also hold for the corresponding parameters of evolutionary trees).

We give a short outline of the survey. In the next section, we recall the definitions of evolutionary
trees and the Yule model. In Section 3, we define what we mean by a shape parameter of an evolu-
tionary tree and show that the distribution of such a parameter under the Yule model coincides with the
distribution under the random binary search tree model from computer science (which will be defined in
this section as well). Then, in Section 4, we define additive shape parameters and explain two important
methods from computer science for deriving distributional results for such parameters. In fact, these
parameters have also been considered for evolutionary trees and we explain the connections. Finally, in
Section 5, we explain a generalization of the Yule model which also includes other random tree models
from combinatorics and computer science.

2 Evolutionary Trees and the YHK model

Throughout this survey, we consider rooted binary trees, i.e., trees with a node of degree 2 distinguished
as root and all other nodes either of degree 3 (or outdegree 2 if edges are directed away from the root) or



Figure 1: A ranked plane tree constructed in steps (i) & (ii) of the Yule model with probability 1/24.

1; the former two are called internal nodes and the latter leaves. Also, we call a tree plane if the children
(the tips of the outgoing edges) of any internal node have a left-right order and non-plane otherwise.
Using these notions, we can now define evolutionary trees (or phylogenetic trees).

Definition 1 (Evolutionary Tree). An evolutionary tree, denoted by t, is a non-plane leaf-labeled tree
with the leaves labeled bijectively with elements from the set {1,...,n}, where n is the number of
leaves; we write |t| = n and call n the size of t. A tree shape, denoted by 7, is an evolutionary tree with
the labels of the leaves discarded, i.e., 7 is merely a non-plane tree.

Evolutionary trees are basic objects in phylogenetics; see [22, 23]. One of the simplest random
models for them arose from a seminal paper of Yule [25] and is consequently called the Yule model.
However, note that the model was not explicitly defined in [25] but rather in a paper of Harding [13] (in
which the paper of Yule was not even cited). We use Harding’s definition.

Definition 2 (Yule Model). A random evolutionary tree of size n under the Yule model is generated by
the following steps:

(1) Start with the (unique) plane tree with two leaves (which is called a cherry);

(i) Recursively create a sequence of plane trees as follows: Pick uniformly at random a leaf and
replace it by a cherry; do this until n leaves are obtained.

(iii) Label the n leaves in depth-first order by a permutation which is picked uniformly at random from
all permutations of the set {1,...,n};

(iv) Forget the order of the children of all internal nodes.

Remark 1. e If the roots of the cherries in steps (i) & (ii) are labeled by 1,2, . . . in the order in which
they are created, we obtain after the first two steps all plane trees of size n whose n — 1 internal
nodes are labeled so that the labels along paths from the root to a leaf are increasing; see Figure 1.
These trees are called ranked plane trees. Clearly, there are exactly (n — 1)! such trees of size n.

e Likewise, after the third step, we obtain all ranked plane leaf-labeled trees; their number is given
by n!(n — 1)!. Note that the first three steps generate all these trees uniformly at random.

Every outcome of an instance of the Yule model has probability 1/(n!(n — 1)!); see item (ii) of the
above remark. However, note that the same evolutionary tree ¢ may result from many different outcomes.
More precisely, we have the following (well-known) result for the probability of ¢.

Theorem 1. The probability of an evolutionary tree t of size n under the Yule model is given by
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where 1(t) denotes the set of internal nodes of t and t,, is the tree rooted at v which consists of v and all
the descendants of v.

Proof. We count the number of instances which produce ¢ in the random process underlying the Yule
model (by following the random process backwards). First, there are 2"~ ways of embedding ¢ such
that the resulting tree is a plane leaf-labeled tree. Next, we need to count the number of ways of ranking
these trees. Let £ denote such an embedding. Then, the number of rankings of #, denoted by rank(?), is

recursively given by:
n—2

rank() = (% Jrank(@ a7, @

where ¢ and ¢ denote the subtrees rooted at the left and right child of the root, respectively. This
recurrence is explained as follows: any ranking is obtained by distributing the n — 2 labels of internal
nodes minus the label of the root to the subtrees £ and ¢ and then ranking these two subtrees. By
iterating (2),

rank(t) = (n — 2)! H L - (n—1)! H ! 3)

t,| — 1 to| — 1’
vel(t)\{r} to] vel(t) to]

where 7 denotes the root of ¢ and the last step follows by including the root in the product and noting
that |t,| = |t,|. The claimed result follows from this since P(¢) = 2" 'rank(f)/(n!(n — 1)!). 1

Note that (3) is also the number of possible rankings of an evolutionary tree ¢, i.e., the number of
ranked non-plane leaf-labeled trees which give ¢ if the ranking is discarded. Moreover, the total number
of these trees of size n, by item (ii) of Remark 1 upon forgetting the order of the children of internal
nodes, is given by n!(n — 1)!/2"~1. Thus, by picking one such tree uniformly at random and discarding
the ranking, an evolutionary tree ¢ is again obtained with probability given by (1). Thus, this is another
way of defining the Yule model. In fact, the uniform generation of ranked non-plane leaf-labeled trees
of size n can be done as follows: start with n items labeled by {1,...,n — 1} and recursively take two
items and replace them by one which is labeled by {1,...,n — 1} where we start with n — 1 until 1 is
reached. This random process is the Kingman’s coalescent from population genetics; see [16].

Remark 2. Due to Harding’s and Kingman’s contributions to the Yule model, the Yule model is some-
times also (more precisely) called Yule-Harding-Kingman model (or YHK model for short). However, in
this paper, we will only refer to it as Yule model.

3 Shape Parameters and Random Binary Search Trees

We start with the definition of a shape parameter.

Definition 3 (Shape Parameter). A shape parameter, denoted by X,,, is a mapping which assigns every
tree shape of size n a real number.

Clearly, any shape parameter can be extended to a class of trees of size n where trees are in addition
ranked and/or plane and/or leaf-labeled by assigning the same value to all trees of size n with the same
tree shape. With a slight abuse of notation, we use X, to denote the same shape parameter for all these
tree classes.

Many shape parameters have been defined and studied in phylogenetics, e.g., shape parameters
which are measures of the balance (or imbalance) of trees; see [10]. We introduce two of them, where
the second strictly speaking does not satisfy the definition of an (im)balance index from [10] but is
nevertheless often included in the list of (im)balance indices.

Example 1. (i) The Sackin index, denoted by S, of a tree shape 7 of size n is defined as the sum of
the root-to-leaf distances over all leaves.



(i1) The cherry index, denoted by C,,, of a tree shape 7 of size n is defined as the number of cherries
of 7, i.e., number of internal nodes with both children being leaves.

Another shape parameter, the number of ancestral configurations, was investigated in [8, 9], where
it was shown that its distribution under the Yule model coincides with its distribution for ranked plane
trees which are picked uniformly at random. This is, in fact, a general phenomenon which holds for any
shape parameter.

Theorem 2. The distribution of a shape parameter X,, under the Yule model is the same as the distri-
bution under the uniform model on ranked plane trees of size n.

Proof. Let t be a ranked non-plane tree of size n. The claim follows by showing that
ord(t) lab(t)

(n—1)!  nl(n— 1)
where ord(t) and lab(t) are the number of different ranked plane trees and ranked non-plane leaf-labeled
trees which correspond to ¢ (after forgetting the ordering of internal nodes resp. discarding leaf labels).
Note that the denominators are the number of ranked plane trees (see item (i) of Remark 1) and the
number of ranked non-plane leaf-labeled trees (see paragraph after Theorem 1) of size n.

Equivalently, we have to show that

n—1

ord(t) = 2 lab(t)

n!
which follows by taking a ranked non-plane leaf-labeled tree, choosing an order of the children of every
internal node, and then discarding the leaf labels. 1

We can now make the promised connection to computer science. Therefore, we recall the definition
of a (random) binary search tree, which is a fundamental data structure in computer science; see, e.g.,
[17, 18] and Figure 2, (a) for an example.

Definition 4 (Binary Search Tree). A binary search tree is a plane tree built from a permutation of
{1,...,n — 1} as follows: the first element goes to the root; all other elements are distributed to the left
and right subtree of the root according to whether they are smaller and larger than the root; the subtrees
are built recursively using the same rules; finally, an unlabeled left and/or right leaf is added to a node if
the left and/or right subtree of the node is empty.

Moreover, a random binary search tree is a binary search tree which is built from a random permu-
tation of {1,...,n — 1}.

Shape parameters of binary search trees have been extensively studied as they are measures of the
complexity of algorithms performed on binary search trees. For instance, the Sackin index from Exam-
ple 1 is related to the unsuccessful search in a binary search tree, i.e., a search starting from the root
which ends at a leaf; see [17, 18]. Also, since binary search trees are closely related to the quicksort
algorithms from computer science, the Sackin index is also closely related to an important complexity
measure of quicksort, namely, the number of key comparisons; see [12]. The number of cherries and
more complicated patterns have been studied for binary search trees as well; see, e.g., [11].

An important observation is that shape parameters under the Yule model have the same distribution
as shape parameters for random binary search trees.

Theorem 3. The distribution of a shape parameter X,, under the Yule model is the same as the distri-
bution under the random binary search tree model.

Proof. The claim follows by constructing a map that maps a permutation of the set {1,...,n — 1}
bijectively to a ranked plane tree of size n that has the same tree shape as the binary search tree built
from the permutation. Such a map is obtained by using the recursive procedure for building the binary
search tree but storing, instead of the elements of the permutation, the positions of the elements in the
permutation into the internal nodes of the tree; see Figure 2, (b). |
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(a) (b)

Figure 2: (a) A binary search tree built from the permutation 4752361; (b) The ranked plane tree which
is the image of the permutation from (a) under the map in the proof of Theorem 3.

4 Analysis of Additive Shape Parameters

In the sequel, we restrict ourselves to an important “subclass” of shape parameters, namely, additive
shape parameters.

Definition 5 (Additive Shape Parameter). A shape parameter X (7), where 7 is a tree shape, is called
an additive shape parameter if X (1) can be recursively computed from the two subtrees of the roots,
denoted by 7¢ and 7", respectively, as follows:

X(r) =X+ X (") + T(r), @)
where T'(7) is a function from tree shapes into real numbers which is called the toll function.

Example 2. (i) The Sackin index is an additive shape parameter with 7'(7) = |7|;

(ii) The cherry index is an additive shape parameter with 7'(7) = 1 if |7| = 2 and 0 otherwise.

Note that with the above definition, actually any shape parameter is additive (by a suitable choice
of the toll function). Thus, further restrictions are necessary in order to be able to prove (meaningful)
general results, i.e., results which hold for a whole class of additive shape parameters; see, e.g., [14, 15,
24]. As in these papers, we are interested in stochastic results for X (¢) when the tree ¢ is random (and ¢
is not necessarily just a tree shape).

In the sequel, we denote by X, the random variable obtained by considering ¢ to be a random binary
search tree of size n (or, equivalently, an evolutionary tree of size n under the Yule model). Moreover,
we assume that 7, (the random variable corresponding to the toll function) is deterministic (as is the
case, e.g., for the Sackin index and the cherry index; see the example above). Then, (4) translates into
a distributional recurrence for X,,. Before stating it, we need the following lemma which shows that
the left subtree of a random binary search tree of size n has a uniform distribution. (Note that the
corresponding property for the Yule model is well-known; see, e.g., Lemma 3.1 in [23].)

Lemma 4. Let I,, denote the size of the left subtree of the root in a random binary search tree of size n.

Then, .
Plh=j)=—= (1<j<n-1)

Proof. Recall that a random binary search tree of size n is built from a random permutation of the set
{1,...,n — 1}. The left subtree of the root has size j if and only if the first element of this random
permutation is j which clearly happens with probability 1/(n — 1) as claimed. 1



Proposition 5. Let X,, be an additive shape parameter of a random binary search tree of size n. Then,
d *
Xn =X, + X, + T, (n>2), 5)

where I, is as in the last lemma, X 2 X, and (Xn)02y, (X622, and (I1),)52 are independent.

This distributional recurrence is the starting point of many studies on additive shape parameters;
see [14, 15, 24]. Here, we are going to explain two powerful and (very) general methods for deriving
moments and limit laws, namely, the moment-transfer approach and the contraction method. (Both
methods also work if 7}, is random and satisfies suitable conditions.) More precisely, we explain in
detail the former and then briefly comment on the latter.

First, note from (5) that all (centered or non-centered) moments of X, satisfy a recurrence of the
form (for details, see the proof of Lemma 6 and Proposition 8 below):

n—1
2
=g aGtbn  (n22), (6)
j=1
where (for the sake of simplicity) a; = 0. This recurrence is readily solved:
n—1 b
an=2nY —>— +b,, n > 2). (7)

From this, e.g., for the cherry index C,, we immediately obtain the following well-known result;
see, e.g., [10] and references therein.

Lemma 6. We have,

E(Crn) = (n>3) and V(C,)=—

§>
Proof. Note that the mean satisfies (6) with b,, = T}, where T, is given in item (ii) of Example 2. Thus,

from (7), for n > 3,

by 2n
E(C,) =2n— = —
(Cn) =20 = 3

as claimed. For the variance, a little bit more computation is necessary. We leave the details to the
reader. (The sequence b,, for the variance is given in the proof of Proposition 8 below.) |

This can be extended to higher moments but it is now better to aim for asymptotic results. For this,
we need a so-called asymptotic transfer result for (6); see, Lemma 2 in [14]. (We only give a simplified
version of the latter result.)

Lemma 7 (Asymptotic Transfer). (i) Ifb, = O(n'~¢), where € > 0 is arbitrarily small, then, a,, ~
cn with .
J; i +1)
(ii) If by, ~ cn®, where o > 1, then ay, ~ (a + 1)en®/(a — 1).

Proof. (i) This follows immediately from (7) by extending the range of summation to infinity. (Note
that the resulting series then converges by the assumption.)
(ii) By plugging the assumption into (7), we have

n—1

1

2

an ~ 2cn E J92 4 en® ~ 2cna/ 2% 2dz 4+ en® = ( + 1> cn®,
= 0 a—1




where in the second asymptotic equivalence, we have approximated the sum by an integral. The claim
follows from this. 1

This result can now be used together with induction to obtain the first-order asymptotics of all central
moments of C;,, which satisfy (6) where b,, is a function of moments of smaller order; see (8) and (9)
below. (This method has been nicknamed moment pumping in computer science.)

Proposition 8. For allm > 0,
m m/2
E(Crn = E(Cn))™ ~ gm | 77 )
45
where g, is the m-th moment of the standard normal distribution N (0, 1).

Remark 3. We use the (convenient but slightly unusual) convention that f(n) ~ cg(n) with ¢ = 0 means

that £(n) = o(g(n)).

Proof. We prove the claim by induction on m. Note that the result holds trivially form = 0and m =1
(with the convention from Remark 3), and also for m = 2 because of Lemma 6.

Assume now that it holds for all m’ < m. In order to prove it for ¢£§n V= E(C,, — E(Cyp))™, first,
by a straightforward computation (which starts from (5)):

n—1
2 m m
ol = =30+ ul, ®)
n =
where )
- 1 — m a L e
=Y S ()l adm) ©)
7=1 a+b+c=m »
a,b<m
with

A(j,n) = Tp + E(C;) + E(Cp_y) — E(Ch)

and 7T, is given in item (ii) of Example 2. Note that from Lemma 6, we have that A(j,n) = O(1) which
holds uniformly in 7 and n.
Next, by using the induction hypothesis,

n—1
ml 1 m [a] .[b] . e
wl=—=> > <a’b C)qﬁj On5 A )

a,b<m
n—1 .\ a/2 N\ b/2
1 m 27 2(n—7)
n—l,Z 2 (a,b>9“<45> g”( 45
7j=1a+b=m
a,b<m
m m/2 m 1 n—1 ] a/2 j b/2
(%) X ()52 () (-9)

at+b=m J=1

2£ m/2 Z m /1 a/2(1_ )b/Qd
45 o a,b Yalb 0 o o “

where the first asymptotics equivalence follows since the terms with ¢ > 0 do not contribute to the
main term (here, we have used that A(j,n) = O(1)) and the last asymptotics equivalence follows by
approximating the sum by an integral.



A straightforward computation reveals that

Thus,

from which the claim follows by item (ii) of Lemma 7. |

Consequently, from the method of moments in probability theory (see Chapter 30 in [4]), we obtain

the central limit theorem
Cpn—n/3 4

— N(0,1)
V2n/45
which for evolutionary trees was first proved in [19] (with a completely different method).

Remark 4. In fact, much more is known, namely, any pattern is asymptotically normal; see [14] and [11]
where this was proved with the singularity perturbation method. Also, this can be extended to patterns
whose size is even allowed to moderately grow with n; see [6].

The moment-transfer method can also be applied to the Sackin index S;,. Here, we first obtain from
(7) the following result for the mean and variance; see, e.g., [10].

Lemma 9. We have,
E(S,) = 2n(H, — 1) ~ 2nlogn  and  V(S,) = Tn® — 4n*HP — 2nH, —n,

where Hy, = >7"_,(1/j) and o = Z?Zl(l/jQ) are the first and second Harmonic numbers.

Also, again from the asymptotic transfer result and moment pumping, we obtain for the central
moments; see [14].

Proposition 10. For m > 0,
E(S, —E(S,))™ ~ ¢n™,

where ¢, is recursively given by co = 1, c; = 0, and
m+1 m !
em = Z <a, b, c> CaCb/o (1 — z)°A(z)cdz, (m > 2) (10)
a+b+c=m
a,b<m

with A(x) = 2xlogx + 2(1 — x) log(l — z) + 1.

In order to obtain a limit distribution result from this, we need to show that there exists a random
variable which is uniquely determined by the moment sequence c,,. For this, we use well-known results
from probability theory (see Chapter 30 in [4]), e.g., one sufficient condition that such a random variable
exists is that the power series

oo :L‘m
D ey
m=0 ’

has a non-negative radius of convergence. This follows from an estimate for ¢,, of the form

lem| < A™ml!



for a suitable constant A > 0 which is proved by induction and (10). Thus, there exists an S that is
uniquely determined by its moments ¢, := E(S™). Consequently, from the method of moments, we
have

Sn —2nlogn d, g

n

The moment-transfer approach can be applied to a great number of additive shape parameters of
random binary search trees and thus evolutionary trees under the Yule model. To give one more example,
we consider the total cophenetic index ®,, which is defined as the sum of distances from the root to the
lowest common ancestor over all pairs of (different) leaves. This index, a balance index according to
the definition in [10], was introduced in [20]. For evolutionary trees under the Yule model, the moment-
transfer approach was used in [7] to derive the following limit distribution result.

Theorem 11. For the cophenetic index ®,, of evolutionary trees of size n under the Yule model,

)
X
n

where ® is uniquely determined by its moment sequence. More precisely, we have E(®™) = d,, with
do = 1 and

_ 1 m L /e (2a + 25)1(2b 4 2¢ — 25)!
o = (2m)!(2m — 1) Z (a, b, c)dadbz () 9¢ , (m >2).

a+b+c=m 7=0 J
a,b<m

Remark 5. The other method mentioned at the beginning of this section, namely the contraction method,
also starts from (5). This method is based on Banach’s fixed-point theorem and a careful choice of a
distance; readily applicable black-box results are available (see [21]). However, the method sometimes
requires the knowledge of the asymptotics of mean and/or variance and then can only be used in con-
nection with tools from the moment-transfer approach; see [14]. On the other hand, if the latter is not
the case, then the contraction method also does yield asymptotic expansions of mean and/or variance.

5 A Generalization of the Yule Model

We give a reformulation of the definition of the Yule model. For this purpose, we first show that the
random plane tree created in the first two steps of the Yule process satisfies the property from Lemma 4
for random binary search trees.

Lemma 12. The size of the left subtree of the random plane tree of size n generated in steps (i) & (ii) of
the Yule process is uniformly distributed on {1, ... ,n — 1}.

Proof. We work with ranked plane trees; see item (i) of Remark 1. The left subtree has size j if j —1 out
of the n — 2 ranks (for the internal nodes excluding the root) go to the left subtree. Thus, the probability
that the left subtree has size j with 1 < j < n — 1 equals

<n—2)(j—1)!(n—1—j)! _ 1

j—1 (n—1)! n—1

This proves the claim. |

Instead of using steps (i) & (ii) of the Yule process, we can generate a random plane tree of size n
also as follows (see Figure 3):

(i’) Pick n dots uniformly at random in the unit interval;



Figure 3: A plane tree constructed by step (i’) & (ii’); the interval with dots are next to the node and the
red vertical line indicates where the interval is cut.

(i1’) Split the unit interval into two (non-empty) subintervals by cutting at a point chosen uniformly
at random (if one of the subintervals is empty repeat this step); the dots in the two subintervals
are the leaves of the left and right subtree of the root; recursively repeat this step with the two
(re-scaled) subintervals until each subinterval just contains one dot.

This in fact, gives the same random model on plane trees.

Lemma 13. The size of the left subtree of the random plane tree of size n generated by steps (i’) & (ii’)
is uniformly distributed on {1,...,n — 1}.

Proof. The probability that the left subinterval after splitting the unit interval from step (i’) contains j
dots equals

[ G- (paesona (Y - e

where ((a, b) denotes the S-function. However, j is not allowed to be 0 or n. Thus, the probability that
the left subtree has size 7 with 1 < 7 < n — 1 equals

/(n+1) 1

1-2/(n+1) n—1

which proves the claim. |

Consequently, we can replace steps (i) & (ii) in Defintion 2 by steps (i’) & (ii’) above. The advan-
tage of this is that this modified definition can easily be generalized by using in step (ii’) a probability
distribution for the cutting which is different from the uniform distribution. In [1], it was suggested to
use a S-distribution, i.e., a continuous distribution with density:

(28 +2)
— W;gﬂ(l —2)?,  ze01], (B>-1),

f(x)
where I'(x) denotes the I'-function. The resulting random model on evolutionary trees of size n is called
the B-splitting model.

For this choice of the distribution, the size of the left subtree of the random plane tree generated after
the first two steps has probability:

L T(B+j+1)I(B+n—j+1)
Pri = (B) 1 —j)!
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where ¢(/3) is a suitable normalization constant (so that Z?;ll Pn; = 1). Note that this expression
makes also sense for —2 < 5 < —1 and we can thus extend the range of 5 to § > —2.

We conclude by pointing out some important choices of 5 for which we recover other models from
computer science and phylogenetics.

(i) B = oo: This gives the random trie model from computer science; see Chapter 5 in [18];
(i) S = 0: This is the Yule model;

(ili) B = —1: The resulting model apparently provides a good fit to many real-world trees; see [5]. We
have

1 1 .
Pnj = (1<j<n-1)

n—1 .7 (n - ] ) ’
and additive shape parameters still satisfy (5) but with P(I,, = j) = p,_ ;. However, extending the
tools from Chapter 4 has so far turned out to be largely elusive. Nevertheless, there has recently
been some progress on this case; see [2, 3].

(iv) 8 = —3/2: Here, we have

Cj—1Cn—j—1

’ 1§§n_17
o 1<y )

Pn,j =

where C), is the n-th Catalan number, which counts plane trees of size n + 1. Thus, in this case,
we obtain the uniform model (or PDA model) of evolutionary trees which is another fundamental
model in phylogenetics; see [23]. (This model has also been studied in combinatorics where it is
usually called the Catalan model; see [12].)
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