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Shape parameters, e.g., balance indices, of evolutionary trees have been
extensively studied under the Yule model in phylogenetics. Independently, many
of the same parameters have also been studied for random binary search trees
in computer science, where they measure the running time of algorithms. In fact,
under the Yule and binary search tree models, these parameters have the same
distribution, resulting in many identical discoveries. In this survey, we explain
these connections and introduce some of the tools which have been used in
computer science to derive stochastic results for shape parameters.

1. Introduction
The Yule model (or, more precisely, Yule-Harding-Kingman
model or YHK model for short) is one of the simplest
and most basic random models for evolutionary trees.
It produces random evolutionary trees whose properties
have been extensively studied via shape parameters. These
parameters take only the shape of the evolutionary tree
into account and thus can be investigated for any binary
tree model, for instance for random binary search trees.
In fact, many of the shape parameters for evolutionary
trees under the Yule model have also independently been
studied in computer science for the latter model, where
they share the same distribution. The goal of this survey
is to explain these connections, survey some of the tools
which have been used in computer science, and show
some of the results which have been proved with these
tools (and which in turn also hold for the corresponding
parameters of evolutionary trees).

We give a short outline of the survey. In the next
section, we recall the definitions of evolutionary trees
and the Yule model. In Section 3, we define what we
mean by a shape parameter of an evolutionary tree and
show that the distribution of such a parameter under
the Yule model coincides with the distribution under
the random binary search tree model from computer
science (which will be defined in this section as well).
Then, in Section 4, we define additive shape parameters
and explain an important method from computer science
for deriving distributional results for such parameters.
In fact, these parameters have also been considered for
evolutionary trees and we explain the connections. In
Section 5, we explain a generalization of the Yule model
which also includes other random tree models from
combinatorics and computer science. We conclude the
paper by a summary in Section 6.
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Figure 1. A ranked plane tree obtained in steps (i) & (ii) of the Yule model with probability 1/(5− 1)! = 1/24.

2. Evolutionary Trees and the YHK model
Throughout this survey, we consider rooted binary trees, i.e., trees with a node of degree 2 distinguished as root and all other
nodes either of degree 3 (or outdegree 2 if edges are directed away from the root) or 1; the former two are called internal nodes and
the latter leaves. Also, we call a tree plane (or ordered) if the children (the tips of the outgoing edges) of any internal node have a
left-right order and non-plane (or unordered) otherwise.

Using these notions, we can now define evolutionary trees (or phylogenetic trees).

Definition 1 (Evolutionary Tree). An evolutionary tree, denoted by t, is a non-plane leaf-labeled tree with the leaves labeled
bijectively with elements from the set {1, . . . , n}, where n is the number of leaves; we write |t|= n and call n the size of t. A
tree shape, denoted by τ , is an evolutionary tree with the labels of the leaves discarded, i.e., τ is merely a non-plane tree.

Evolutionary trees are basic objects in phylogenetics; see [38,39]. One of the simplest random models for them arose from the
seminal paper of Yule [41] and is consequently called the Yule model. However, note that the model was not explicitly defined
in [41] but rather in a paper of Harding [25]. We use Harding’s definition.

Definition 2 (Yule Model). A random evolutionary tree of size n under the Yule model is generated by the following steps:

(i) Start with the (unique) plane tree with two leaves (which is called a cherry);
(ii) Recursively create a sequence of plane trees as follows: Pick uniformly at random a leaf and replace it by a cherry; do this

until n leaves are obtained.
(iii) Label the n leaves in depth-first order1 by a permutation which is picked uniformly at random from all permutations of

the set {1, . . . , n};
(iv) Forget the order of the children of all internal nodes.

Remark 1. • If the roots of the cherries in steps (i) & (ii) are labeled by 1, 2, . . . in the order in which they are created, we
obtain after the first two steps all plane trees of size n whose n− 1 internal nodes are labeled so that the labels along
paths from the root to a leaf are increasing; see Figure 1. These trees are called ranked plane trees. Note that there are exactly
(n− 1)! such trees of size n. (Another name for ranked trees is histories; see [29] and references therein.)

• Likewise, after the third step, we obtain all ranked plane leaf-labeled trees; their number is given by n!(n− 1)!. Note that the
first three steps generate all these trees uniformly at random.

Every outcome of an instance of the Yule model has probability 1/(n!(n− 1)!); see the second part of Remark 1. However, note
that the same evolutionary tree t may result from many different outcomes. More precisely, we have the following (well-known)
result for the probability of t.

Theorem 1. The probability of an evolutionary tree t of size n under the Yule model is given by

P(t) = 2n−1

n!

∏
v∈I(t)

1

|tv| − 1
, (2.1)

where I(t) denotes the set of internal nodes of t and tv is the tree rooted at v which consists of v and all the descendants of v.

Proof. We count the number of instances which produce t in the random process underlying the Yule model (by following the
random process backwards). First, there are 2n−1 ways of embedding t such that the resulting tree is a plane leaf-labeled tree.

1Recall that a depth-first search of a tree starts from the root and traverses every node by branching always along right edges until this is not possible anymore in which
case the algorithm backtracks to the first left edge that has not been traversed yet along which the search is continued.
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Next, we need to count the number of ways of ranking these trees. Let t̃ denote such an embedding. Then, the number of rankings
of t̃, denoted by rank(t̃), is recursively given by:

rank(t̃) =

(
n− 2

|t̃ℓ| − 1

)
rank(t̃ℓ)rank(t̃r), (2.2)

where t̃ℓ and t̃r denote the subtrees rooted at the left and right child of the root, respectively. This recurrence is explained as
follows: any ranking is obtained by distributing the n− 2 labels of internal nodes excluding the label of the root to the subtrees t̃ℓ

and t̃r and then ranking these two subtrees. By iterating (2.2),

rank(t̃) = (n− 2)!
∏

v∈I(t)\{r}

1

|t̃v| − 1
= (n− 1)!

∏
v∈I(t)

1

|tv| − 1
, (2.3)

where r denotes the root of t̃ and the last step follows by including the root in the product and noting that |t̃v|= |tv|. The claimed
result follows from this since P(t) = 2n−1rank(t̃)/(n!(n− 1)!), where 2n−1 and 1/(n!(n− 1)!) are the number of embeddings and
the probability, respectively, of a random instance which produces t.

Note that (2.3) is also the number of possible rankings of an evolutionary tree t, i.e., the number of ranked non-plane leaf-labeled
trees which give t if the ranking is discarded. Moreover, the total number of these trees of size n, by item (ii) of Remark 1 upon
forgetting the order of the children of internal nodes, is given by n!(n− 1)!/2n−1. Thus, by picking one such tree uniformly at
random and discarding the ranking, an evolutionary tree t is again obtained with probability given by (2.1). Thus, this is another
way of defining the Yule model. In fact, the uniform generation of ranked non-plane leaf-labeled trees of size n can be done as
follows: start with n items labeled by {1, . . . , n− 1} and recursively take two items and replace them by one which is labeled
by {1, . . . , n− 1} where we start with n− 1 until 1 is reached. This random process is the Kingman’s coalescent from population
genetics; see [30].

Remark 2. Due to Harding’s and Kingman’s contributions to the Yule model, the Yule model is sometimes also (more precisely)
called Yule-Harding-Kingman model (or YHK model for short). However, in this paper, we will only refer to it as Yule model.

3. Shape Parameters and Random Binary Search Trees
We start with the definition of a shape parameter.

Definition 3 (Shape Parameter). A shape parameter, denoted by Xn, is a mapping which assigns every tree shape of size n a real
number.

Any shape parameter can be extended to a class of trees of size n where trees are in addition ranked and/or plane and/or
leaf-labeled by assigning the same value to all trees of size n with the same tree shape. With a slight abuse of notation, we use Xn

to denote the same shape parameter for all these tree classes.
Many shape parameters have been defined and studied in phylogenetics, e.g., balance indices which are shape parameters that

measure the balance (or imbalance) of a tree; see [19]. We introduce two of them, where the second strictly speaking does not
satisfy the definition of an (im)balance index from [19] but is nevertheless often included in the list of (im)balance indices.

Example 1. (i) The Sackin index, denoted by Sn, of a tree shape τ of size n is defined as the sum of the root-to-leaf distances
over all leaves.

(ii) The cherry index, denoted byCn, of a tree shape τ of size n is defined as the number of cherries of τ , i.e., number of internal
nodes with both children being leaves.

Another (quite different) shape parameter, which arises in the context of gene trees and species trees, is the number of ancestral
configurations. This parameter was investigated in [15,16] where it was shown that its distribution under the Yule model coincides
with its distribution for ranked plane trees which are picked uniformly at random. This is, in fact, a general phenomenon which
holds for any shape parameter.

Theorem 2. The distribution of a shape parameter Xn under the Yule model is the same as the distribution under the uniform model on
ranked plane trees of size n.

Proof. Let t be a ranked non-plane tree of size n. The claim follows by showing that

pla(t)

(n− 1)!
=

lab(t)

n!(n− 1)!21−n
, (3.1)

where pla(t) and lab(t) are the number of different ranked plane trees and ranked non-plane leaf-labeled trees, respectively, which
correspond to t (after forgetting the ordering of the children of the internal nodes resp. discarding leaf labels). Note that the shape
parameter has the same value for the latter two classes of trees and the denominators in (3.1) are the number of ranked plane trees
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Figure 2. (a) A binary search tree built from the permutation 4̄7̄5̄2̄3̄6̄1̄; (b) The ranked plane tree which is the image of the permutation from (a) under the map

in the proof of Theorem 3.

(see item (i) of Remark 1) and the number of ranked non-plane leaf-labeled trees (see paragraph after Theorem 1) of size n. Thus,
(3.1) is an identity for two probabilities.

We can re-formulate (3.1) as follows

pla(t) =
2n−1

n!
lab(t)

which is proved by taking any ranked non-plane leaf-labeled tree corresponding to t ( counted by lab(t) on the right-hand side),
choosing an order of the children of every internal node (counted by the factor 2n−1), and then discarding the leaf labels (which
gives the factor 1/n!). This yields all ranked plane trees corresponding to t, i.e., the left-hand side of the claim.

We can now make the promised connection to computer science. Therefore, we recall the definition of a (random) binary search
tree, which is a fundamental data structure in computer science; see, e.g., Section 6.2.2 in [31], Chapter 2 in [32], and Figure 2, (a)
for an example.

Definition 4 (Binary Search Tree). A binary search tree of size n is a plane tree built from a permutation of {1, . . . , n− 1} as follows:
the first element goes to the root; all other elements are distributed to the left and right subtree of the root according to whether
they are smaller or larger than the root; the subtrees are built recursively using the same rules; finally, an unlabeled left and/or
right leaf is added to a node if the left and/or right subtree of the node is empty.

Moreover, a random binary search tree is a binary search tree which is built from a random permutation of {1, . . . , n− 1}.

Shape parameters of binary search trees have been extensively studied as they are measures of the complexity of algorithms
performed on binary search trees. For instance, the Sackin index from Example 1 is related to the unsuccessful search in a binary
search tree, i.e., a search starting from the root which ends at a leaf; see Section 6.2.2 in [31] and Section 2.4 in [32]. Also, since
binary search trees are closely related to the quicksort algorithms from computer science, the Sackin index is also closely related to
one of the most widely studied complexity measures of quicksort, namely, the number of key comparisons; see Section 1.5 in [22]
and Example 2 below. The number of cherries and more general patterns have been studied for binary search trees as well; see,
e.g., [20].

An important observation is that shape parameters under the Yule model have the same distribution as shape parameters for
random binary search trees; see, e.g., [8] or [5].

Theorem 3. The distribution of a shape parameter Xn under the Yule model is the same as the distribution under the random binary search
tree model.

Proof. By Theorem 2, the claim follows by constructing a map that maps a permutation of the set {1, . . . , n− 1} bijectively to a
ranked plane tree of size n that has the same tree shape as the binary search tree built from the permutation. Such a map is obtained
by using the recursive procedure for building the binary search tree but storing, instead of the elements of the permutation, the
positions of the elements in the permutation into the internal nodes of the tree; see Figure 2, (b).

4. Analysis of Additive Shape Parameters
In the sequel, we restrict ourselves to an important “subclass" of shape parameters, namely, additive shape parameters.
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Definition 5 (Additive Shape Parameter). A shape parameter X(τ), where τ is a tree shape, is called an additive shape parameter if
X(τ) can be recursively computed from the two subtrees of the roots, denoted by τ ℓ and τr , respectively, as follows:

X(τ) =X(τ ℓ) +X(τr) + T (τ), (4.1)

where T (τ) is a function from tree shapes into real numbers which is called the toll function.

Example 2. (i) The Sackin index2 is an additive shape parameter with T (τ) = |τ |;
(ii) The cherry index is an additive shape parameter with T (τ) = 1 if |τ |= 2 and 0 otherwise.

Note that with the above definition, actually any shape parameter is additive (by a suitable choice of the toll function). Thus,
further restrictions are necessary in order to be able to prove (meaningful) general results, i.e., results which hold for a whole class
of additive shape parameters; see, e.g., [26,27,40]. As in these papers, we are interested in stochastic results for X(t) when the tree
t is random (and t is not necessarily just a tree shape).

In the sequel, we denote by Xn the random variable obtained by considering t to be a random binary search tree of size
n (or, equivalently, an evolutionary tree of size n under the Yule model). Moreover, we assume that Tn (the random variable
corresponding to the toll function) is deterministic (as is the case, e.g., for the Sackin index and the cherry index; see the example
above). Then, (4.1) translates into a distributional recurrence for Xn. Before stating it, we need the following lemma which shows
that the left subtree of a random binary search tree of size n has a uniform distribution. (Note that the corresponding property for
the Yule model is well-known; see, e.g., Lemma 3.1 in [39].)

Lemma 4. Let In denote the size of the left subtree of the root in a random binary search tree of size n. Then,

P(In = j) =
1

n− 1
, (1≤ j ≤ n− 1).

Proof. Recall that a random binary search tree of size n is built from a random permutation of the set {1, . . . , n− 1}. The left
subtree of the root has size j if and only if the first element of this random permutation is j which happens with probability
1/(n− 1) as claimed.

Proposition 5. Let Xn be an additive shape parameter of a random binary search tree of size n. Then,

Xn
d
=XIn +X∗

n−In + Tn, (n≥ 2), (4.2)

where In is as in the last lemma, X∗
n

d
=Xn, and (Xn)

∞
n=1, (X

∗
n)

∞
n=1, and (In)

∞
n=1 are independent.

This distributional recurrence is the starting point of many studies on additive shape parameters; see [26,27,40]. Here, we are
going to explain a powerful and (very) general methods for deriving moments and limit laws, namely, the moment-transfer approach.
Moreover, at the end of this section, we briefly comment on another method, namely, the contraction method. (Both methods also
work if Tn is random and satisfies suitable conditions.)

The major steps of the moment-transfer approach are summarized in Figure 1 in [10]. We briefly recall them, adjusted to the
way they are used below. First, it is shown that all moments and central moments satisfy the same type of recurrence. Then, this
recurrence is solved and mean and variance are derived from the solution. Next, a so-called asymptotic transfer result is obtained
for the recurrence which is used to derive the first-order asymptotics of all central moments. Finally, the limit law is identified
from the asymptotic moment sequence.

Now, to carry out these steps, we first observe that from (4.2), we see that all (centered or non-centered) moments ofXn indeed
satisfy the same recurrence (for details, see the proof of Lemma 6 and Proposition 8 below):

an =
2

n− 1

n−1∑
j=1

aj

+ bn, (n≥ 2), (4.3)

where (for the sake of simplicity) a1 = 0. This recurrence has the solution:

an = 2n

n−1∑
j=2

bj
j(j + 1)

+ bn, (n≥ 2). (4.4)

From this, e.g., for the cherry indexCn, we immediately obtain the following result; see, e.g., [19,33] (phylogenetics) and [20,26]
(computer science).

Lemma 6. We have,

E(Cn) =
n

3
, (n≥ 3) and V(Cn) =

2n

45
, (n≥ 5).

2Note that this toll function subtracted by two gives also the cost of building a binary search tree of size n as after the first element of the permutation (of length n − 1)
is placed into the root exactly n − 2 elements need to be compared with the first element in order to build the subtrees. Equivalently, this gives also the number of key
comparisons of quicksort.
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Proof. Note that the mean satisfies (4.3) with bn = Tn where Tn is given in item (ii) of Example 2. Thus, from (4.4), for n≥ 3,

E(Cn) = 2n
b2
6

=
n

3

as claimed. For the variance, the result follows similarly but with more computations that in particular rely on the result for the
mean. (The sequence bn for the variance is given in the proof of Proposition 8 below.)

This can be extended to higher moments but it is more useful in general to aim for asymptotic results. We first recall some
asymptotic notation. First, for a sequences an and a positive sequence bn, we write an =O(bn) if |an/bn| is bounded. Moreover,
we use an = o(bn) if an/bn tends to 0 and an ∼ bn if an/bn tends to 1. Using these notations, we state now an asymptotic transfer
result for (4.3); see, Lemma 2 in [26]. The result says, in a nutshell, that an behaves linearly if bn is sublinear and an grows as bn if
bn is superlinear. (The linear case, which is not needed here, exhibits a different behavior; see [26].)

Lemma 7 (Asymptotic Transfer). (i) If bn =O(n1−ϵ), where ϵ > 0 is arbitrarily small, then, an ∼ cn with

c= 2
∑
j≥2

bj
j(j + 1)

.

(ii) If bn ∼ cnα, where α> 1, then an ∼ (α+ 1)cnα/(α− 1).

Remark 3. According to our definitions, we need to require that c > 0. However, the above result still holds for c= 0 if f(n)∼
0 · g(n) is interpreted as f(n) = o(g(n)). We will use this (convenient but non-standard) convention throughout the rest of the
paper.

Proof. (i) This follows from (4.4) by extending the range of summation to infinity which introduces an error of o(1) as the resulting
series converges by the assumption that bn =O(n1−ϵ). Thus,

an = 2n

∑
j≥2

bj
j(j + 1)

+ o(1)

+ bn ∼ 2

∑
j≥2

bj
j(j + 1)

n

as claimed.

(ii) By plugging the assumption that bn ∼ cnα into (4.4), we have

an ∼ 2cn

n−1∑
j=2

jα−2 + cnα ∼ 2cnα
∫1
0
xα−2dx+ cnα =

(
2

α− 1
+ 1

)
cnα,

where in the second asymptotic equivalence, we have approximated the sum by an integral. The claim follows from this.
This result can now be used together with induction to obtain the first-order asymptotics of all central moments of Cn which

satisfy (4.3) where bn is a function of moments of smaller order; see (4.5) and (4.6) below. (This method has been nicknamed
moment pumping in computer science; see, e.g., Section VII.10.1 in [22].)

Proposition 8. For all m≥ 0,

E(Cn − E(Cn))
m ∼ gm

(
2n

45

)m/2

,

where gm is the m-th moment of the standard normal distribution N(0, 1), i.e.,

gm =

{
(2k)!2−k/k!, if m= 2k;

0, if m= 2k + 1.

Proof. We prove the claim by induction on m. Note that the result holds for m= 0 and m= 1 (with the convention from Remark 3
since g1 = 0), and also for m= 2 because of Lemma 6.

Assume now that it holds for all m′ <m. In order to prove it for ϕ[m]
n :=E(Cn − E(Cn))

m, first, by a lengthy computation
(which proceeds by plugging (4.2) for Cn into the definition of ϕ[m]

n and expanding the m-th power with the help of the
multinomial theorem):

ϕ
[m]
n =

2

n− 1

n−1∑
j=1

ϕ
[m]
j + ψ

[m]
n , (4.5)

where

ψ
[m]
n =

1

n− 1

n−1∑
j=1

∑
a+b+c=m
a,b<m

(
m

a, b, c

)
ϕ
[a]
j ϕ

[b]
n−j∆(j, n)c (4.6)

with
∆(j, n) = Tn + E(Cj) + E(Cn−j)− E(Cn)
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and Tn is given in item (ii) of Example 2. Note that from Lemma 6, we have that ∆(j, n) =O(1) which holds uniformly in j and n.
Next, by plugging the induction hypothesis into (4.6),

ψ
[m]
n =

1

n− 1

n−1∑
j=1

∑
a+b+c=m
a,b<m

(
m

a, b, c

)
ϕ
[a]
j ϕ

[b]
n−j∆(j, n)c

∼ 1

n− 1

n−1∑
j=1

∑
a+b=m
a,b<m

(
m

a, b

)
ga

(
2j

45

)a/2

gb

(
2(n− j)

45

)b/2

∼
(
2n

45

)m/2 ∑
a+b=m
a,b<m

(
m

a, b

)
gagb

1

n− 1

n−1∑
j=1

(
j

n

)a/2(
1− j

n

)b/2

∼
(
2n

45

)m/2 ∑
a+b=m
a,b<m

(
m

a, b

)
gagb

∫1
0
xa/2(1− x)b/2dx, (4.7)

where the first asymptotics equivalence follows since the terms with c > 0 do not contribute to the main term (here, we have used
that ∆(j, n) =O(1)) and the last asymptotics equivalence follows by approximating the Riemann sum by the integral.

As for the sum in (4.7), first note that it is 0 for m odd (as either a or b is odd and thus either ga = 0 or gb = 0). Likewise, for
even m= 2k, we only need to consider even a and b and thus obtain

k−1∑
ℓ=1

(
2k

2ℓ

)
g2ℓg2k−2ℓ

∫1
0
xℓ(1− x)k−ℓdx=

(2k)!

2k

k−1∑
ℓ=1

1

ℓ!(k − ℓ!)

∫1
0
xℓ(1− x)k−ℓdx

=
(2k)!

2k

k−1∑
ℓ=1

1

ℓ!(k − ℓ!)
· ℓ!(k − ℓ)!

(k + 1)!
=
k − 1

k + 1
g2k,

where we have plugged in the expression for gm and simplified in the first step and evaluated the integral (either directly by using
integration by parts or by appealing to the beta function) and again simplified in the second step.

Overall this shows that the sum in (4.7) equals (m− 1)gm/(m+ 1) and thus,

ψ
[m]
n ∼ m− 1

m+ 1
gm

(
2n

45

)m/2

from which the claim follows by item (ii) of Lemma 7.

Finally, from the method of moments in probability theory (see Chapter 30 in [6]), we obtain the central limit theorem

Cn − n/3√
2n/45

d−→N(0, 1)

which for evolutionary trees was first proved in [33] (with a completely different method).

Remark 4. In fact, much more is known, namely, the number of occurrences of any pattern is asymptotically normal; see [26] where
this was proved with the same approach as above and [20] where the authors used a mathematically more advanced method
(which is based on complex analysis). Also, this result can be extended to patterns whose size is even allowed to moderately grow
with n; see [9]3.

The moment-transfer method can also be applied to the Sackin index Sn. Here, we first obtain from (4.4) the following result
for the mean and variance; see, e.g., [19] (phylogenetics) and Section 5.7 in [22] (computer science).

Lemma 9. We have,

E(Sn) = 2n(Hn − 1)∼ 2n logn and V(Sn) = 7n2 − 4n2H
(2)
n − 2nHn − n,

where Hn =
∑n

j=1(1/j) and H(2)
n =

∑n
j=1(1/j

2) are the first and second Harmonic numbers.

Also, again from the asymptotic transfer result and moment pumping, we obtain for the central moments; see [26].

3The patterns considered in these papers should be more accurately called fringe patterns as they consist of a vertex in the tree and all its descendants. In [9], an even
more general definition of pattern is used, namely, every finite set of fringe patterns of the same size is considered to be a pattern
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Proposition 10. For m≥ 0,

E(Sn − E(Sn))m ∼ cmn
m,

where cm is recursively given by c0 = 1, c1 = 0, and

cm =
m+ 1

m− 1

∑
a+b+c=m
a,b<m

(
m

a, b, c

)
cacb

∫1
0
xa(1− x)bΛ(x)cdx, (m≥ 2) (4.8)

with Λ(x) = 2x log x+ 2(1− x) log(1− x) + 1.

In order to obtain a limit distribution result from this, we need to show that there exists a random variable which is uniquely
determined by the moment sequence cm. For this, we use results from probability theory (see Chapter 30 in [6]), e.g., one sufficient
condition that such a random variable exists is that the power series

∞∑
m=0

cm
xm

m!

has a non-negative radius of convergence. This follows from an estimate for cm of the form

|cm| ≤Amm!

for a suitable constant A> 0 which is proved by induction and (4.8). Thus, there exists an S that is uniquely determined by its
moments cm :=E(Sm). Consequently, from the method of moments, we have

Sn − 2n logn

n

d−→ S,

a result first established in [36,37].
The moment-transfer approach can be applied to a great number of additive shape parameters of random binary search trees

and thus evolutionary trees under the Yule model. To give one more example, where the toll-sequence is actually random, we
consider the total cophenetic index Φn which is defined as the sum of distances from the root to the lowest common ancestor over all
pairs of (different) leaves. This index, a balance index according to the definition in [19], was introduced in [34]. For evolutionary
trees under the Yule model, the moment-transfer approach was used in [11] to derive the following limit distribution result.

Theorem 11. For the cophenetic index Φn of evolutionary trees of size n under the Yule model,

Φn

n2
d−→Φ,

where Φ is uniquely determined by its moment sequence. More precisely, we have E(Φm) = dm with d0 = 1 and

dm =
1

(2m)!(2m− 1)

∑
a+b+c=m
a,b<m

(
m

a, b, c

)
dadb

c∑
j=0

(
c

j

)
(2a+ 2j)!(2b+ 2c− 2j)!

2c
, (m≥ 2).

Remark 5. The other method mentioned at the beginning of this section, namely the contraction method, also starts from (4.2).
This method is based on Banach’s fixed-point theorem and a careful choice of a distance; readily applicable black-box results are
available (see [35]). However, the method sometimes requires the knowledge of the asymptotics of mean and/or variance and
then can only be used in connection with tools from the moment-transfer approach; see [26]. On the other hand, if mean and/or
variance are not needed for the application of the method, then the contraction method yields asymptotic expansions of these
quantities as a consequence.

5. A Generalization of the Yule Model
In this section, we explain a generalization of the Yule model which contains other models from computer science; see [14] for a
generalization different to the one discussed below.

We start with a re-formulation of Definition 2. For this, we first show that the random plane tree created in the first two steps
of the Yule process satisfies the property from Lemma 4 for random binary search trees.

Lemma 12. The size of the left subtree of the random plane tree generated in steps (i) & (ii) of the Yule process is uniformly distributed on
{1, . . . , n− 1}.

Proof. We work with ranked plane trees; see item (i) of Remark 1. The left subtree has size j if j − 1 out of the n− 2 ranks (for the
internal nodes excluding the root) go to the left subtree. Thus, the probability that the left subtree has size j with 1≤ j ≤ n− 1
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Figure 3. A plane tree constructed by step (i’) & (ii’); the interval with dots are next to the node and the red vertical line indicates where the interval is cut.

equals (
n− 2

j − 1

)
(j − 1)!(n− 1− j)!

(n− 1)!
=

1

n− 1
.

This proves the claim.

Instead of using steps (i) & (ii) of the Yule process, we can generate a random plane tree of size n also as follows (see Figure 3):

(i’) Pick n dots uniformly at random in the unit interval;
(ii’) Split the unit interval into two (non-empty) subintervals by cutting at a point chosen uniformly at random (if one of the

subintervals is empty repeat this step); the dots in the two subintervals are the leaves of the left and right subtree of the
root; recursively repeat this step with the two (re-scaled) subintervals until each subinterval just contains one dot.

This, in fact, gives the same random model on plane trees.

Lemma 13. The size of the left subtree of the random plane tree generated by steps (i’) & (ii’) is uniformly distributed on {1, . . . , n− 1}.

Proof. The probability that the left subinterval after splitting the unit interval from step (i’) contains j dots equals∫1
0

(
n

j

)
xj(1− x)n−jdx=

(
n

j

)
β(j + 1, n+ 1− j) =

(
n

j

)
j!(n− j)!

(n+ 1)!
=

1

n+ 1
,

where β(a, b) denotes the β-function. However, j is not allowed to be 0 or n. Thus, the probability that the left subtree has size j
with 1≤ j ≤ n− 1 equals

1/(n+ 1)

1− 2/(n+ 1)
=

1

n− 1

which proves the claim.

Consequently, we can replace steps (i) & (ii) in Defintion 2 by steps (i’) & (ii’) above. The advantage of this is that this modified
definition can easily be generalized by using in step (ii’) a probability distribution for the cutting which is different from the
uniform distribution. In [1] (see also [2]), it was suggested to use a β-distribution, i.e., a continuous distribution with density:

f(x) =
Γ (2β + 2)

Γ (β + 1)2
xβ(1− x)β , x∈ [0, 1], (β >−1),

where Γ (x) denotes the Γ -function. The resulting random model on evolutionary trees of size n is called the β-splitting model.
For this choice of the distribution, the size of the left subtree of the random plane tree generated after the first two steps has

probability:

pn,j =
1

c(β)

Γ (β + j + 1)Γ (β + n− j + 1)

j!(n− j)!
, (1≤ j ≤ n− 1), (5.1)

where c(β) is a suitable normalization constant (so that
∑n−1

j=1 pn,j = 1). Note that this expression makes also sense for −2<β ≤
−1 and we can thus extend the range of β to β >−2.

We conclude by pointing out some important choices of β for which we recover other models from computer science and
phylogenetics.

(i) β =∞: This gives the random trie model from computer science (whose name comes from the word data retrieval); see
Chapter 5 in [32];

(ii) β = 0: This is the Yule model;
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(iii) β =−1: The resulting model apparently provides a good fit to many real-world trees; see [7]. We have

pn,j =
1

Hn−1
· 1

j(n− j)
, (1≤ j ≤ n− 1)

and additive shape parameters still satisfy (4.2) but with P (In = j) = pn,j . However, extending the tools from Section 4
has so far turned out to be largely elusive. Nevertheless, there has recently been some progress on this case; see [3,4].

(iv) β =−3/2: Here, we have

pn,j =
Cj−1Cn−j−1

Cn−1
, (1≤ j ≤ n− 1),

whereCn is the n-th Catalan number, which counts plane trees of size n+ 1. Thus, in this case, we obtain the uniform model
(or PDA model) of evolutionary trees which is another fundamental model in phylogenetics; e.g., see Section 2.5 in [38].
(This model has also been studied in combinatorics where it is called the Catalan model; see, e.g., Section 5.5 in [22].)

6. Conclusion
The main purpose of this survey was to draw attention to the fact that shape parameters for evolutionary trees under the Yule
model and binary search trees under the binary search tree model share the same distribution (Theorem 3). For the former
(phylogenetics), these shape parameters are often used to measure the balance of trees; for the latter (theoretical computer science),
they describe the complexity of algorithms performed on trees. In phylogenetics, mainly mean and variance of shape parameters
were considered; in theoretical computer science, also more sophisticated stochastic results such as limit laws have been proved.
We presented a general and powerful method from the latter area, namely, the moment-transfer approach and discussed in detail
two shape parameters which have been analyzed in both areas. More examples could be given, e.g., the product on the right-hand
side of (2.1) has also been studied in theoretical computer science where it is called the shape functional; see, e.g., [17].

The connection between the Yule model and the binary search tree model extends to other models in phylogenetics and
theoretical computer science. More precisely, we explained that the β-splitting model for β =∞ corresponds to the trie model
in theoretical computer science and β =−3/2 gives the PDA model in phylogenetics and the Catalan model in combinatorics
(which has also some significance in theoretical computer science; see, e.g., Section 5.6 in [22]). Moments of shape parameters
under the β-splitting model satisfy the recurrence:

an =

n−1∑
j=1

pn,j(aj + an−j) + bn,

where pn,j is given by (5.1). There exist results towards an asymptotic transfer theorem for this recurrence; see [23]. However, no
asymptotic transfer result of the same strength as Lemma 7 has so far been established for the β-splitting model. It is an interesting
open problem to prove such a result as this would one allow to obtain moments and limit distribution results of shape parameters
for the β-splitting model, in particular, for β =−1 which seems to be the most relevant value of β in applications.

We conclude with some pointers on further reading about the topic of this survey. (Some of the references below have already
appeared in the main text.) First, concerning literature about phylogenetics, the survey [19], which however mainly discusses
combinatorial properties, is an excellent resource. A subset of the authors of this survey published an accompanying study that
also addresses probabilistic models and results; see [28]. This study, in particular the software package which comes with it, should
lead to many interesting conjectures for whose proofs the tools from theoretical computer science might turn out to be useful. As
for suggested literature from computer science, we recommend the introductory texts [22,32] and [21,31] for a more advanced
treatment. The book [21] also contains a brief introduction into the moment-transfer approach (e.g. from Page 532 on), however,
for further reading on this method, we refer the interested reader to the research literature (e.g., [12,13,18,24]).

Acknowledgements
We thank the reviewers and the editor for positive feedback and helpful comments. Moreover, we acknowledges partial support
by the National Science and Technology Council (NSTC), Taiwan under grant NSTC-111-2115-M-004-002-MY2.

References
1. D. Aldous (1996). Probability distributions on cladograms, Random discrete structures (Minneapolis, MN, 1993), 76, 1–18.
2. D. Aldous (2001). Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today, Statist. Sci., 16:1, 23–34.
3. D. Aldous. The critical beta-splitting random tree model II: Overview and open problems, arXiv:2303.02529.
4. D. Aldous and B. Pittel. The critical beta-splitting random tree: Heights and related results, arXiv:2302.05066.
5. F. Bergeron, P. Flajolet, B. Salvy (1992). Varieties of increasing trees, Lecture Notes in Comput. Sci., 581, 24–48.
6. P. Billingsley. Probability and Measure, 3rd edition, John Wiley & Sons, New York, 1995.
7. M. G. B. Blum and O. Franco̧is (2006). Which random processes describe the tree of life? A large-scale study of phylogenetic

tree imbalance, Syst. Biol., 55, 685–691.
8. M. G. B. Blum, O. Franco̧is, S. Janson (2006). The mean, variance and limiting distribution of two statistics sensitive to

phylogenetic tree balance, Ann. Appl. Probab., 16:4, 2195–2214.
9. H. Chang and M. Fuchs (2010). Limit theorems for patterns in phylogenetic trees, J. Math. Biol., 60:4, 481–512.



11

royalsocietypublishing.org/journal/rstb
P

hil.
Trans.

R
.S

oc.
B

0000000
...........................................................................

10. C.-H. Chen and M. Fuchs (2011). On the moment-transfer approach for random variables satisfying a one-sided distributional
recurrence, Electron. J. Probab., 16:30, 903–928.

11. L.-A. Chen. Probabilistic Analysis of the Total Cophenetic Index in Phylogenetic Trees, master thesis, National Chiao Tung Univesity
(NCTU), 2015.

12. W.-M. Chen and H.-K. Hwang (2003). Analysis in distribution of two randomized algorithms for finding the maximum in a
broadcast communication model, J. Algor., 46:2, 140–177.

13. H.-H. Chern and H.-K. Hwang (2001). Phase changes in random m-ary search trees and generalized quicksort, Random Struc.
Algor., 19:3-4, 316–358.

14. E. H. Dickey and N. A. Rosenberger. Labeled histories with multifurcation and simultaneity, Philos. Trans. R. Soc. B: Biol. Sci.,
submitted.

15. F. Disanto, M. Fuchs, C.-Y. Huang, A. R. Paningbatan, N. A. Rosenberg (2024). The distributions under two species-tree models
of the total number of ancestral configurations for matching gene trees and species trees, Adv. in Appl. Math., 152, 102594.

16. F. Disanto, M. Fuchs, A. R. Paningbatan, N. A. Rosenberg (2023). The distributions under two species-tree models of the
number of root ancestral configurations for matching gene trees and species trees, Ann. Appl. Probab., 32:6, 4426–4458.

17. J. A. Fill (1996). On the distribution of binary search trees under the random permutation model, Random Struc. Algor., 8:1,
1-25.

18. J. A. Fill and N. Kapur (2005). Transfer theorems and asymptotic distributional results for m-ary search trees, Random Struc.
Algor., 26:4, 359–391.

19. M. Fischer, L. Herbst, S. J. Kersting, L. Kühn, K. Wicke. Tree Balance Indices: A Comprehensive Survey, Springer, 1st edition, 2023.
20. P. Flajolet, X. Gourdon, C. Martinez (1997). Patterns in random binary search trees, Random Struc. Algor., 11:3, 223–244.
21. P. Flajolet and R. Sedgewick. Analytic Combinatorics, Cambridge University Press, 1st edition, 2009.
22. P. Flajolet and R. Sedgewick. An Introduction to the Analysis of Algorithms, Addison-Wesley, 2nd edition, 2013.
23. M. Fuchs and A. R. Paningbatan (2020). Correlation between Shapley values of rooted phylogenetic trees under the beta-

splitting model, J. Math. Biol., 80:3, 627–653.
24. M. Fuchs, R. Neininger, H.-K. Hwang (2006). Profiles of random trees: limit theorems for random recursive trees and binary

search trees, Algorithmica, 46:3-4, 367–407.
25. E. F. Harding (1971). The probabilities of rooted tree-shapes generated by random bifurcation, Adv. App. Probab., 3:1, 44–77.
26. H.-K. Hwang and R. Neininger (2002). Phase change of limit laws in the Quicksort recurrence under varying toll functions,

SIAM J. Comput., 31, 1687–1722.
27. S. Janson (2022). Central limit theorems for additive functionals and fringe trees in tries, Electron. J. Probab., 27, Paper No. 47.
28. S. J. Kersting, K. Wicke, M. Fischer. Tree balance in phylogenetic models, Philos. Trans. R. Soc. B: Biol. Sci., submitted.
29. M. C. King and N. A. Rosenberg (2023). A mathematical connection between single-elimination sports tournaments and

evolutionary trees, Math. Mag., 96:5, 484–497.
30. J. F. C. Kingman (1982). The coalescent, Stochastic Process. Appl., 13:3, 235–248.
31. D. E. Knuth. The Art of Computer Programming, Volume III, Sorting and Searching, Addison-Wesley, 2nd edition, 1998.
32. H. M. Mahmoud. Evolution of Random Search Trees, John Wiley & Sons, New York, 1992.
33. A. McKenzie and M. Steel (2000). Distributions of cherries for two models of trees, Math. Biosci., 164, 81–92.
34. A. Mir, F. Rosselló, L. Rotger (2013). A new balance index for phylogenetic trees, Math. Biosci., 241:1, 125–136.
35. R. Neininger and L. Rüschendorf (2004). A general limit theorem for recursive algorithms and combinatorial structures. Ann.

Appl. Probab., 14:1, 378–418.
36. M. Régnier (1989). A limiting distribution for Quicksort, RAIRO Inform. Théor. Appl., 23, 335–343.
37. U. Rösler (1991). A limit theorem for “Quicksort”, RAIRO Inform. Théor. Appl., 25, 85–100.
38. C. Semple and M. Steel. Phylogenetics, Oxford University Press, 2003.
39. M. Steel. Phylogeny—Discrete and Random Processes in Evolution, CBMS-NSF Regional Conference Series in Applied

Mathematics, 89, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
40. S. Wagner (2015). Central limit theorems for additive tree parameters with small toll functions, Combin. Probab. Comput., 24:1,

329–353.
41. G. U. Yule (1925). A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S, Philos. Trans. R. Soc. B,

Biol. Sci., 213, 21–87.


	1 Introduction
	2 Evolutionary Trees and the YHK model
	3 Shape Parameters and Random Binary Search Trees
	4 Analysis of Additive Shape Parameters
	5 A Generalization of the Yule Model
	6 Conclusion
	References

