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Profiles of Trees

Rooted tree of size n.
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Node profile:

# of nodes at level k.

Subtree size profile:

# of subtrees of size k.

Both are a double-indexed sequence Xn,k.
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Recent Studies of Profile

Node Profile: extensively studied for many classes of trees.

Drmota and Gittenberger (1997); Chauvin, Drmota, Jabbour-Hattab
(2001); Chauvin, Klein, Marckert, Rouault (2005); Drmota and Hwang
(2005); Fuchs, Hwang, Neininger (2006); Hwang (2007); Drmota, Janson,
Neininger (2008); Park, Hwang, Nicodeme, Szpankowski (2009); Drmota
and Szpankowski (2010); etc.

Subtree Size Profile: mainly studied for binary trees and increasing trees.

Feng, Miao, Su (2006); Feng, Mahmoud, Su (2007); Feng, Mahmoud,
Panholzer (2008); Fuchs (2008); Chang and Fuchs (2010); Dennert and
Grübel (2010); etc.
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Why studying the Subtree Size Profile?

Fine shape characteristic

, e.g.,

Tn := total path length;

Wn := Wiener index,

then,

Tn =
∑
k≥0

kXn,k and Wn =
∑
k≥0

(n− k)kXn,k.

Contains information about occurrences of patterns.

Important in many fields such as Computer Science (compressing,
etc.), Mathematical Biology (phylogenetics), etc.
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Random Binary Trees

1

2 4

3 6 5

7 8

Randomly pick an
external node and
replace it by a cherry.

Equivalent to random
binary search tree.
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Random Recursive Trees

1

2

3

4

5

Randomly pick an
external node and
replace it by an internal
node.

Add external nodes.

Same as uniform model for non-plane trees with increasing labels.
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Random Plane-oriented Recursive Trees (PORTs)

1

23 2

4 5

Randomly pick an
external node and
replace it by an internal
node.

Add external nodes.

Same as uniform model for plane trees with increasing labels.
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Importance of the Random Models

Random Binary Trees

Binary search tree, Quicksort, Yule-Harding Model in Phylogenetics,
Coalescent Model, etc.

Random Recursive Trees

Simple model for spread of epidemics, for pyramid schemes, for
stemma construction of philology, etc. Also, used in computational
geometry and in Hopf algebras.

Random PORTs

One of the simplest network models (for instance for WWW).

Michael Fuchs (NCTU) Subtree Size Profile of PORTs January 22nd, 2011 8 / 27



Limit Laws for Random Binary Trees

Theorem (Feng, Mahmoud, Panholzer; F.)

(i) (Normal range) Let k = o (
√
n). Then,

Xn,k − µn,k
σn,k

d−→ N (0, 1).

(ii) (Poisson range) Let k ∼ c
√
n. Then,

Xn,k
d−→ Poisson(2c−2).

(iii) (Degenerate range) Let k < n and
√
n = o(k). Then,

Xn,k
L1−→ 0.

Similar result holds for random recursive trees as well.
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Consequences for Occurrences of Pattern Sizes

Pattern=Subtree on the fringe of the tree.

# of patterns of size k:

Ck =
1

k + 1

(
2k

k

)
∼ 4k
√
πk3/2

.

Hence, all patterns can just occur up to a size O(log n).

On the other hand, our result shows:

Pattern sizes occur until o(
√
n).

Pattern sizes sporadically exist around
√
n.

Patterns with sizes beyond
√
n are unlikely.
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Why are Pattern Sizes beyond
√
n unlikely?

Tn =total path length.

It is well-known that Tn is of order n log n with high probability.

Recall that

Tn =
n−1∑
k=0

kXn,k

Hence, if all pattern sizes up to k0 exist, then

Θ(k20) =
∑
k≤k0

k ≤ Tn = Θ(n log n).

Thus, pattern sizes beyond
√
n log n are very unlikely.
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Method of Moments

Theorem

Zn, Z random variables. If

E(Zmn ) −→ E(Zm)

for all m ≥ 1 and Z is uniquely determined by its moments, then

Zn
d−→ Z.

If Z is standard normal, then

E(Zmn ) =

{
0, if m is odd;

m!/(2m/2(m/2)!), if m is even.
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Proof of the Limit Laws

Feng, Mahmoud, Panholzer:

Derived a complicated explicit expression for centered moments.

Used the exact expression to obtain first order asymptotics.

Many cancellations!

Our approach:

Derived a recurrence for centered moments.

Derived first order asymptotics via induction.

Our approach is easier and can be applied to other random trees.
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Theorem (F.)

(i) (Normal range) Let k = o (
√
n). Then,

Xn,k − µn
σ
√
n

d−→ N (0, 1),

where µ = 1/(2k2) and

σ2 =
8k2 − 4k − 8

(4k2 − 1)2
− (2k − 3)!!2

(k − 1)!24k−1k(2k + 1)
.

(ii) (Poisson range) Let k ∼ c
√
n. Then,

Xn,k
d−→ Poisson(2c−2).

(iii) (Degenerate range) Let k < n and
√
n = o(k). Then,

Xn,k
L1−→ 0.
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Proof for Fixed k

Set

Ā
[m]
k (z) =

∑
n≥1

τnE(Xn,k − µn)
zn

n!

Then,

d

dz
Ā

[m]
k (z) =

Ā
[m]
k (z)

1− 2z
+ B̄

[m]
k (z),

where B̄
[m]
k (z) is a function of Ā

[i]
k (z) with i < m.

Above ODE has solution

Ā
[m]
k (z) =

1√
1− 2z

∫ z

0
B̄

[m]
k (t)

√
1− 2tdt.

Asymptotics of centered moments via induction (“moment-pumping”).
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Singularity Analysis

Consider

∆ = {z : |z| < r, z 6= 1/2, | arg(z − 1/2)| > ϕ},

where r > 1 and 0 < ϕ < π/2.

Theorem (Flajolet and Odlyzko)

(i) For α ∈ C \ {0,−1,−2, · · · }

[zn](1− 2z)−α ∼ 2nnα−1

Γ(α)

(
1 +

α(α− 1)

2n
+ · · ·

)
.

(ii) Let f(z) be analytic in ∆. Then,

f(z) = O
(
(1− 2z)−α

)
⇒ [zn]f(z) = O

(
2nnα−1

)
.
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Closure Properties

Theorem

Let f(z) be analytic in ∆ with

f(z) =

J∑
j=0

cj(1− 2z)αj +O
(
(1− 2z)A

)
,

where αj , A 6= 1. Then,
∫ z
0 f(t)dt is analytic in ∆ and

(i) if A > −1, then for some explicit c∫ z

0
f(t)dt = −1

2

J∑
j=0

cj
αj + 1

(1− 2z)αj+1 + c+O
(
(1− 2z)A+1

)
;

(ii) if A < −1, then as above but without c.
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Asymptotic Expansions

Proposition

Ā
[m]
k (z) is analytic in ∆.

Moreover,

Ā
[2m−1]
k (z) = O

(
(1− 2z)3/2−m

)
and

Ā
[2m]
k (z) =

(2m)!(2m− 3)!!σ2m

4mm!
(1− 2z)1/2−m +O

(
(1− 2z)1−m

)
.

From this, by singularity analysis,

E(Xn,k − µn)m =

{
0, if m is odd;

m!/(2m/2(m/2)!), if m is even.
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Proof for Varying k

Set Ā
[m]
n,k = E(Xn,k − µn)m.

Then,

Ā
[m]
n,k =

∑
1≤j<n

πn,j(Ā
[m]
j,k + Ā

[m]
n−j,k) + B̄

[m]
n,k ,

where B̄
[m]
n,k is a function of Ā

[i]
n,k with i < m and

πn,j =
2(n− j)CjCn−j

nCn
.

We have

Ā
[m]
n,k =

∑
k+1≤j≤n

(n+ 1− j)Cj
Cn

B̄
[m]
j,k .
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Asymptotic Expansions

Proposition

Uniformly in n, k,m

Ā
[m]
n,k = O

(
max

{
n

k2
,
( n
k2

)m/2})
.

Proposition

We have,

Ā
[2m−1]
n,k = o

(( n
k2

)m−1/2)
, Ā

[2m]
n,k ∼ gm

( n

2k2

)m
,

where
gm = (2m)!/(2mm!).
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Simple Classes of Increasing Trees (i)

Consider rooted, plane trees with increasing labels.

Let φr be a weight sequence with φ0 > 0 and φr > 0 for some r ≥ 2.
Denote by φ(ω) the OGF of φr.

Define the weight of a tree T as

ω(T ) =
∏
v∈T

φd(v),

where d(v) is the out-degree of v.

Set
τn =

∑
#T=n

ω(T )

which is the cumulative weight of all trees of size n.
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Simple Classes of Increasing Trees (ii)

Define the probability of a tree of size n as

P (T ) =
ω(T )

τn
.

Previous Models

Random binary trees: φ0 = 1, φ1 = 2, φ2 = 1 and φr = 0 for r ≥ 3;

Random increasing trees: φr = 1/r!.

Random PORTs: φr = 1.

All these models can be obtained from a tree evolution process.
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Grown Simple Classes of Increasing Trees

Theorem (Panholzer and Prodinger)

All simple classes of increasing tree which can be obtained via a tree
evolution process are

Random d-ary trees: φ(ω) = φ0(1 + ct/φ0)
d with

c > 0, d ∈ {2, 3, . . .};

Random increasing trees: φ(ω) = φ0e
ct/φ0 with c > 0;

Generalized random PORTs: φ(ω) = φ0(1− ct/φ0)−r−1 with
c > 0, r > 1.

For stochastic properties, it is sufficient to consider the cases with
φ0 = c = 1.
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Mean for Grown Simple Classes of Increasing Trees

Proposition

For random d-ary trees,

µn,k := E(Xn,k) =
d((d− 1)n+ 1)

((d− 1)k + d)((d− 1)k + 1)
.

Proposition

For generalized random PORTs,

µn,k := E(Xn,k) =
(r − 1)(rn− 1)

(rk + r − 1)(rk − 1)
.
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Limit Laws for d-ary Trees

Theorem (F.)

(i) (Normal range) Let k = o (
√
n) and k →∞. Then,

Xn,k − µn,k√
µn,k

d−→ N (0, 1).

(ii) (Poisson range) Let k ∼ c
√
n. Then,

Xn,k
d−→ Poisson(2c−2).

(iii) (Degenerate range) Let k < n and
√
n = o(k). Then,

Xn,k
L1−→ 0.
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Limit Laws for Generalized Random PORTs

Theorem (F.)

(i) (Normal range) Let k = o (
√
n) and k →∞. Then,

Xn,k − µn,k√
µn,k

d−→ N (0, 1).

(ii) (Poisson range) Let k ∼ c
√
n. Then,

Xn,k
d−→ Poisson(2c−2).

(iii) (Degenerate range) Let k < n and
√
n = o(k). Then,

Xn,k
L1−→ 0.
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Summary

Inductive approach for deriving limit laws of subtree size profile.

Approach can be applied to many classes of random trees and shows
universality of the phenomena observed by Feng, Mahmoud and
Panholzer.

Simple classes of trees (without labels) can also be treated. For
instance, random Catalan trees were considered in

Chang and Fuchs (2010). Limit Laws for Patterns in Phylogenetic
Trees, J. Math. Biol., 60, 481-512.

Approach can be refined to obtain Berry-Esseen bounds, LLT and
Poisson approximation results.

Michael Fuchs (NCTU) Subtree Size Profile of PORTs January 22nd, 2011 27 / 27



Summary

Inductive approach for deriving limit laws of subtree size profile.

Approach can be applied to many classes of random trees and shows
universality of the phenomena observed by Feng, Mahmoud and
Panholzer.

Simple classes of trees (without labels) can also be treated. For
instance, random Catalan trees were considered in

Chang and Fuchs (2010). Limit Laws for Patterns in Phylogenetic
Trees, J. Math. Biol., 60, 481-512.

Approach can be refined to obtain Berry-Esseen bounds, LLT and
Poisson approximation results.

Michael Fuchs (NCTU) Subtree Size Profile of PORTs January 22nd, 2011 27 / 27



Summary

Inductive approach for deriving limit laws of subtree size profile.

Approach can be applied to many classes of random trees and shows
universality of the phenomena observed by Feng, Mahmoud and
Panholzer.

Simple classes of trees (without labels) can also be treated. For
instance, random Catalan trees were considered in

Chang and Fuchs (2010). Limit Laws for Patterns in Phylogenetic
Trees, J. Math. Biol., 60, 481-512.

Approach can be refined to obtain Berry-Esseen bounds, LLT and
Poisson approximation results.

Michael Fuchs (NCTU) Subtree Size Profile of PORTs January 22nd, 2011 27 / 27



Summary

Inductive approach for deriving limit laws of subtree size profile.

Approach can be applied to many classes of random trees and shows
universality of the phenomena observed by Feng, Mahmoud and
Panholzer.

Simple classes of trees (without labels) can also be treated. For
instance, random Catalan trees were considered in

Chang and Fuchs (2010). Limit Laws for Patterns in Phylogenetic
Trees, J. Math. Biol., 60, 481-512.

Approach can be refined to obtain Berry-Esseen bounds, LLT and
Poisson approximation results.

Michael Fuchs (NCTU) Subtree Size Profile of PORTs January 22nd, 2011 27 / 27


