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Asymptotics of the variances of many cost measures in random digital search trees are often notoriously messy
and involved to obtain. A new approach is proposed to facilitate such an analysis for several shape parameters on
random symmetric digital search trees. Our approach starts from a more careful normalization at the level of Poisson
generating functions, which then provides an asymptotically equivalent approximation to the variance in question.
Several new ingredients are also introduced such as a combined use of the Laplace and Mellin transforms and a
simple, mechanical technique for justifying the analytic de-Poissonization procedures involved. The methodology we
develop can be easily adapted to many other problems with an underlying binomial distribution. In particular, the less
expected and somewhat surprising n(logn)2-variance for certain notions of total path-length is also clarified.
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1 Introduction
The variance of a distribution provides an important measure of dispersion of the distribution and plays
a crucial and, in many cases, a determinantal rôle in the limit law(i). Thus finding more effective means
of computing the variance is often of considerable significance in theory and in practice. However, the
calculation of the variance can be computationally or intrinsically difficult, either because of the messy
procedures or cancellations involved, or because the dependence structure is too strong or simply because
no simple manageable forms or reductions are available. We are concerned in this paper with random
digital trees for which asymptotic approximations to the variance are often marked by heavy calculations
and long, messy expressions. This paper proposes a general approach to simplify not only the analysis but
also the resulting expressions, providing new insight into the methodology; furthermore, it is applicable
to many other concrete situations and leads readily to discover several new results, shedding new light on
the stochastic behaviors of the random splitting structures.

A binomial splitting process. The analysis of many splitting procedures in computer algorithms leads
naturally to a structural decomposition (in terms of the cardinalities) of the form

structure of size n

substructure
of size Bn

substructure
of size B̄nHere Bn ≈ Binomial

and Bn + B̄n ≈ n.

where Bn is essentially a binomial distribution (up to truncation or small perturbations) and the sum of
Bn + B̄n is essentially n.

Concrete examples in the literature include (see the books [15, 28, 44, 50, 62] and below for more
detailed references)

• tries, contention-resolution tree algorithms, initialization problem in distributed networks, and radix
sort: Bn = Binomial(n; p) and B̄n = n − Bn, namely, P(Bn = k) =

(
n
k

)
pkqn−k (here and

throughout this paper, q := 1− p);

• bucket digital search trees (DSTs), directed diffusion-limited aggregation on Bethe lattice, and Eden
model: Bn = Binomial(n− b; p) and B̄n = n− b−Bn;

• Patricia tries and suffix trees: P(Bn = k) =
(
n
k

)
pkqn−k/(1− pn − qn) and B̄n = n−Bn.

(i) The first formal use of the term ”variance” in its statistical sense is generally attributed to R. A. Fisher in his 1918 paper (see [20]
or Wikipedia’s webpage on variance), although its practical use in diverse scientific disciplines predated this by a few centuries
(including closely-defined terms such as mean-squared errors and standard deviations).
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Yet another general form arises in the analysis of multi-access broadcast channel where{
Bn = Binomial(n; p) + Poisson(λ),
B̄n = n− Binomial(n; p) + Poisson(λ),

see [19, 33]. For some other variants, see [2, 6, 25]. One reason of such a ubiquity of binomial distribution
is simply due to the binary outcomes (either zero or one, either on or off, either positive or negative, etc.) of
many practical situations, resulting in the natural adaptation of the Bernoulli distribution in the modeling.

Poisson generating function and the Poisson heuristic. A very useful, standard tool for the analysis
of these binomial splitting processes is the Poisson generating function

f̃(z) = e−z
∑
k≥0

ak
k!
zk,

where {ak} is a given sequence, one distinctive feature being the Poisson heuristic, which predicts that

If an is smooth enough, then an ∼ f̃(n).

In more precise words, if the sequence {ak} does not grow too fast (usually at most of polynomial growth)
or does not fluctuate too violently, then an is well approximated by f̃(n) for large n. For example, if
f̃(z) = zm, m = 0, 1, . . . , then an ∼ nm; indeed, in such a simple case, an = n(n− 1) · · · (n−m+ 1).

Note that the Poisson heuristic is itself a Tauberian theorem for the Borel mean in essence; an Abelian
type theorem can be found in Ramanujan’s Notebooks (see [3, p. 58]).

From an elementary viewpoint, such a heuristic is based on the local limit theorem of the Poisson
distribution (or essentially Stirling’s formula for n!)

nk

k!
e−n ∼ e−x

2/2

√
2πn

(
1 +

x3 − 3x

6
√
n

+ · · ·
)

(k = n+ x
√
n),

whenever x = o(n1/6). Since an is smooth, we then expect that

f̃(n) ≈
∑

k=n+x
√
n

x=O(nε)

ak
e−x

2/2

√
2πn

≈ an
∫ ∞
−∞

e−x
2/2

√
2π

dx = an.

On the other hand, by Cauchy’s integral representation, we also have

an =
n!

2πi

∮
|z|=n

z−n−1ez f̃(z) dz

≈ f̃(n)
n!

2πi

∮
|z|=n

z−n−1ez dz

= f̃(n),

since the saddle-point z = n of the factor z−nez is unaltered by the comparatively more smooth function
f̃(z).
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Analytic de-Poissonization and the Poisson-Charlier expansion. The latter analytic viewpoint pro-
vides an additional advantage of obtaining an expansion by using the Taylor expansion of f̃ at z = n,
yielding

an =
∑
j≥0

f̃ (j)(n)

j!
τj(n), (1)

where

τj(n) := n![zn](z − n)jez =
∑

0≤`≤j

(
j

`

)
(−1)j−`

n!nj−`

(n− `)!
(j = 0, 1, . . . ),

and [zn]φ(z) denotes the coefficient of zn in the Taylor expansion of φ(z). We call such an expansion the
Poisson-Charlier expansion since the τj’s are essentially the Charlier polynomials Cj(λ, n) defined by

Cj(λ, n) := λ−nn![zn](z − 1)jeλz,

so that τj(n) = njCj(n, n). For other terms used in the literature, see [28, 29]; see also [36].
The first few terms of τj(n) are given as follows.

τ0(n) τ1(n) τ2(n) τ3(n) τ4(n) τ5(n) τ6(n)
1 0 −n 2n 3n(n− 2) −4n(5n− 6) −5n(3n2 − 26n+ 24)

It is easily seen that τj(n) is a polynomial in n of degree bj/2c.
The meaning of such a Poisson-Charlier expansion becomes readily clear by the following simple but

extremely useful lemma.

Lemma 1.1 Let f̃(z) := e−z
∑
k≥0 akz

k/k!. If f̃ is an entire function, then the Poisson-Charlier expan-
sion (1) provides an identity for an.

Proof: Since f̃ is entire, we have∑
n≥0

an
n!
zn = ez f̃(z) = ez

∑
j≥0

f̃ (j)(n)

j!
(z − n)j ,

and the lemma follows by absolute convergence. 2

Two specific examples are worthy of mention here as they speak volume of the difference between
identity and asymptotic equivalence. Take first an = (−1)n. Then the Poisson heuristic fails since
(−1)n 6∼ e−2n, but, by Lemma 1.1, we have the identity

(−1)n = e−2n
∑
j≥0

(−2)j

j!
τj(n).

See Figure 1 for a plot of the convergence of the series to (−1)n.
Now if an = 2n, then 2n 6∼ en, but we still have

2n = en
∑
j≥0

τj(n)

j!
.
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Fig. 1: Convergence of e−2n ∑
j≤k(−2)jτj(n)/j! to (−1)n for n = 10 (left) and n = 11 (right) for increasing k.

So when is the Poisson-Charlier expansion also an asymptotic expansion for an, in the sense that
dropping all terms with j ≥ 2` introduces an error of order f̃ (2`)n` (which in typical cases is of order
f̃(n)n−`)? Many sufficient conditions are thoroughly discussed in Jacquet and Szpankowski’s analytic
de-Poissonization paper [36], although the terms in their expansions are expressed differently; see also
[62].

Poissonized mean and variance. The majority of random variables analyzed in the algorithmic liter-
ature are at most of polynomial or sub-exponential (such as ec(logn)2 or ecn

1/2

) orders, and are smooth
enough. Thus the Poisson generating functions of the moments are often entire functions. The use of
the Poisson-Charlier expansion is then straightforward, and in many situations it remains to justify the
asymptotic nature of the expansion.

For convenience of discussion, let f̃m(z) denote the Poisson generating function of the m-th moment
of the random variable in question, say Xn. Then by Lemma 1.1, we have the identity

E(Xn) =
∑
j≥0

f̃
(j)
1 (n)

j!
τj(n),

and for the second moment

E(X2
n) =

∑
j≥0

f̃
(j)
2 (n)

j!
τj(n), (2)

provided only that the two Poisson generating functions f̃1 and f̃2 are entire functions.
These identities suggest that a good approximation to the variance of Xn be given by

V(Xn) = E(X2
n)− (E(Xn))2 ≈ f̃2(n)− f̃1(n)2,

which holds true for many cost measures, where we can indeed replace the imprecise, approximately
equal symbol “≈” by the more precise, asymptotically equivalent symbol “∼”. However, for a large class
of problems for which the variance is essentially linear, meaning roughly that

lim
n→∞

logV(Xn)

log n
= 1, (3)
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the Poissonized variance f̃2(n)− f̃1(n)2 is not asymptotically equivalent to the variance. This is the case
for the total cost of constructing random digital search trees, for example. One technical reason is that
there are additional cancellations produced by dominant terms. The next question is then: can we find a
better normalized function so that the variance is asymptotically equivalent to its value at n?

Poissonized variance with correction. The crucial step of our approach that is needed when the vari-
ance is essentially linear is to consider

Ṽ (z) := f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2, (4)

and it then turns out that
V(Xn) = Ṽ (n) +O((log n)c),

in all cases we consider for some c ≥ 0. The asymptotics of the variance is then reduced to that of Ṽ (z)
for large z, which satisfies, up to non-homogeneous terms, the same type of equation as f̃1(z). Thus the
same tools used for analyzing the mean can be applied to Ṽ (z).

To see how the last correction term zf̃ ′1(z)2 appears, we write D̃(z) := f̃2(z)− f̃1(z)2, so that f̃2(z) =
D̃(z) + f̃1(z)2, and we obtain, by substituting this into (2),

V(Xn) = E(X2
n)− (E(Xn))2

=
∑
j≥0

f̃2
(j)

(n)

j!
τj(n)−

∑
j≥0

f̃1
(j)

(n)

j!
τj(n)

2

= D̃(n)− nf̃ ′1(n)2 − n

2
D̃′′(n) + smaller-order terms.

Now take f̃1(n) � n log n. Then the first term following D̃(n) is generally not smaller than D̃(n)
because

nf̃ ′1(n)2 � n(log n)2,

while D̃(n) � n(log n)2, at least for the examples we discuss in this paper. Note that the variance is in
such a case either of order n log n or of order n. Thus to get an asymptotically equivalent approximation
to the variance, we need at least an additional correction term, which is exactly nf̃ ′1(n)2.

The correction term nf̃ ′1(n)2 already appeared in many early papers by Jacquet and Régnier (see [34]).

A viewpoint from the asymptotics of the characteristic function. Most binomial recurrences of the
form

Xn
d
= XBn +X∗B̄n + Tn, (5)

as arising from the binomial splitting processes discussed above are asymptotically normally distributed,
a property partly ascribable to the highly regular behavior of the binomial distribution. Here the (X∗n) are
independent copies of the (Xn) and the random or deterministic non-homogeneous part Tn is often called
the “toll-function,” measuring the cost used to “conquer” the two subproblems. Such recurrences have
been extensively studied in numerous papers; see [36, 52, 58, 59] and the references therein.
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The correction term we introduced in (4) for Poissonized variance also appears naturally in the follow-
ing heuristic, formal analysis, which can be justified when more properties are available. By definition
and formal expansion

e−z
∑
n≥0

E
(
eXniθ

) zn
n!

=
∑
m≥0

f̃m(z)

m!
(iθ)m

= exp

(
f̃1(z)iθ − D̃(z)

2
θ2 + · · ·

)
,

where D̃(z) := f̃2(z)− f̃1(z)2, we have

E
(
e(Xn−f̃1(n))iθ

)
≈ n!

2πi

∮
|z|=n

z−n−1 exp

(
z +

(
f̃1(z)− f̃1(n)

)
iθ − D̃(z)

2
θ2 + · · ·

)
dz.

Observe that with z = neit, we have the local expansion

neit − nit+
(
f̃1(neit)− f̃1(n)

)
iθ − D̃(neit)

2
θ2 = n− nt2

2
− nf̃ ′1(n)tθ − D̃(n)

2
θ2 + · · · ,

for small t. It follows that

E
(
e(Xn−f̃1(n))iθ

)
≈ n!n−nen

2π
exp

(
−D̃(n)

2
θ2

)∫ ε

−ε
exp

(
−nt

2

2
− nf̃ ′1(n)tθ

)
dt

∼ exp

(
−θ

2

2

(
D̃(n)− nf̃ ′1(n)2

))
,

by extending the integral to±∞ and by completing the square. This again shows that nf̃ ′1(n)2 is the right
correction term for the variance. For more precise analysis of this type, see [36].

A comparison of different approaches to the asymptotic variance. What are the advantages of the
Poissonized variance with correction? In the literature, a few different approaches have been adopted for
computing the asymptotics of the variance of the binomial splitting processes.

• Second moment approach: this is the most straightforward means and consists of first deriving
asymptotic expansions of sufficient length for the expected value and for the second moment, then
considering the difference E(X2

n)− (E(Xn))2, and identifying the lead terms after cancellations of
dominant terms in both expansions. This approach is often computationally heavy as many terms
have to be cancelled; additional complication arises from fluctuating terms, rendering the resulting
expressions more messy. See below for more references.

• Poissonized variance: the asymptotics of the variance is carried out through that of D̃(n) =
f̃2(n) − f̃1(n)2. The difference between this approach and the previous one is that no asymp-
totics of f̃2(n) is derived or needed, and one always focuses directly on considering the equation
(functional or differential) satisfied by D̃(z). As we discussed above, this does not give in many
cases an asymptotically equivalent estimate for the variance, because additional cancellations have
to be further taken into account; see for instance [34, 35, 36].
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• Characteristic function approach: similar to the formal calculations we carried out above, this ap-
proach tries to derive a more precise asymptotic approximation to the characteristic function using,
say complex-analytic tools, and then to identify the right normalizing term as the variance; see the
survey [36] and the papers cited there.

• Schachinger’s differencing approach: a delicate, mostly elementary approach based on the recur-
rence satisfied by the variance was proposed in [58] (see also [59]). His approach is applicable to
very general “toll-functions” Tn in (5) but at the price of less precise expressions.

The approach we use is similar to the Poissonized variance one but the difference is that the passage
through D̃(z) is completely avoided and we focus directly on equations satisfied by Ṽ (z) (defined in (4)).

In contrast to Schachinger’s approach, our approach, after starting from defining Ṽ (z), is mostly ana-
lytic. It yields then more precise expansions, but more properties of Tn have to be known. The contrast
here between elementary and analytic approaches is thus typical; see, for example, [7, 8]. See also Ap-
pendix for a brief sketch of the asymptotic linearity of the variance by elementary arguments.

Additional advantages that our approach offer include comparatively simpler forms for the resulting
expressions, including Fourier series expansions, and general applicability (coupling with the introduction
of several new techniques).

Organization of this paper. This paper is organized as follows. We start with the variance of the total
path-length of random digital search trees in the next section, which was our motivating example. We
then extend the consideration to bucket DSTs for which two different notions of total path-length are
distinguished, which result in very different asymptotic behaviors. The application of our approach to
several other shape parameters are discussed in Section 4. Table 1 summarizes the diverse behaviors
exhibited by the means and the variances of the shape parameters we consider in this paper.

Shape parameters mean variance
Internal PL n log n n

Key-wise PL∗ n log n n
Node-wise PL∗ n log n n(log n)2

Peripheral PL n n
#(leaves) n n

Differential PL n n log n
Weighted PL n(log n)m+1 n

Tab. 1: Orders of the means and the variances of all shape parameters in this paper; those marked with an ∗ are for
b-DSTs with b ≥ 2. Here PL denotes path-length and m ≥ 0.

Applications of the approach we develop here to other classes of trees and structures, including tries,
Patricia tries, bucket sort, contention resolution algorithms, etc., will be investigated in a future paper.



Asymptotic variance of random digital search trees 111

2 Digital Search Trees
We start in this section with a brief description of digital search trees (DSTs), list major shape parameters
studied in the literature, and then focus on the total path-length. The approach we develop is also very
useful for other linear shape measures, which is discussed in a more systematic form in the following
sections.

2.1 DSTs
DSTs were first introduced by Coffman and Eve in [9] in the early 1970’s under the name of sequence hash
trees. They can be regarded as the bit-version of binary search trees (thus the name); see [44, p. 496 et
seq.]. Given a sequence of binary strings, we place the first in the root node; those starting with “0” (“1”)
are directed to the left (right) subtree of the root, and are constructed recursively by the same procedure
but with the removal of their first bits when comparisons are made. See Figure 2 for an illustration.

010111

101011

100001

011011

111110

110111

010011

011110

000100

010111

101011

100001

011011

111110

110111

010011

011110

000100

1

0

0

1

0

1

1

0

Fig. 2: A digital search tree of nine binary strings.

While the practical usefulness of digital search trees is limited, they represent one of the simplest,
fundamental, prototype models for divide-and-conquer algorithms using coin-tossing or similar random
devices. Of notable interest is its close connection to the analysis of Lempel-Ziv compression scheme that
has found widespread incorporation into numerous softwares. Furthermore, the mathematical analysis is
often challenging and leads to intriguing phenomena. Also the splitting mechanism of DSTs appeared
naturally in a few problems in other areas; some of these are mentioned in the last section.

Random digital search trees. The simplest random model we discuss in this paper is the independent,
Bernoulli model. In this model, we are given a sequence of n independent and identically distributed
random variables, each comprising an infinity sequence of Bernoulli random variables with mean p, 0 <
p < 1. The DST constructed from the given random sequence of binary strings is called a random DST.
If p = 1/2, the DST is said to be symmetric; otherwise, it is asymmetric. We focus on symmetric DSTs
in this paper for simplicity; extension to asymmetric DSTs is possible but much harder.

Stochastic properties of many shape characteristics of random DSTs are known. Almost all of them fall
into one of the two categories, according to their growth order being logarithmic or essentially linear (in
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the sense of (3)), which we simply refer to as “log shape measures” and “linear shape measures”.

Log shape measures. The two major parameters studied in this category are depth, which is the distance
of the root to a randomly chosen node in the tree (each with the same probability), and height, which
counts the number of nodes from the root to one of the longest paths. Both are of logarithmic order in
mean. Depth provides a good indication of the typical cost needed when inserting a new key in the tree,
while height measures the worst possible cost that may be needed.

Depth was first studied in [45] in connection with the profile, which is the sequence of numbers, each
enumerating the number of nodes with the same distance to the root. For example, the tree has
the profile {1, 2, 3, 2, 3}. For other papers on the depth of random DSTs, see [11, 12, 13, 37, 38, 39, 44,
46, 47, 50, 55, 60, 61]. The height of random DSTs is addressed in [13, 14, 43, 50, 55].

Linear shape measures. These include the total internal path-length, which sums the distance between
the root and every node, and the occurrences of a given pattern (leaves or nodes satisfying certain proper-
ties); see [24, 26, 30, 31, 35, 40, 42, 44].

The profile contains generally much more information than most other shape measures, and it can to
some extent be regarded as a good bridge connecting log and linear measures; see [15, 17, 45, 46] for
known properties concerning expected profile of random DSTs.

Nodes of random DSTs with p = 1/2 are distributed in an extremely regular way, as shown in Figures 3
and 4.

2.2 Known and new results for the total internal path-length
Throughout this section, we focus on Xn, the total path length of a random digital search tree built from
n binary strings. By definition and by our random assumption, Xn can be computed recursively by

Xn+1
d
= XBn +X∗n−Bn + n, (n ≥ 0) (6)

with the initial condition X0 = 0, since removing the root results in a decrease of n for the total path
length (each internal node below the root contributes 1). Here Bn ∼ Binomial(n; 1/2), Xn

d
= X∗n, and

Xn, X
∗
n, Bn are independent.

Known results. It is known that (see [26, 30, 57])

E(Xn) = (n+ 1) log2 n+ n

(
γ − 1

log 2
+

1

2
− c1 +$1(log2 n)

)
+
γ − 1/2

log 2
+

5

2
− c1 +$2(log2 n) +O

(
n−1 log n

)
,

(7)

where γ denotes Euler’s constant, c1 :=
∑
k≥1(2k − 1)−1, and $1(t), $2(t) are 1-periodic functions

with zero mean whose Fourier expansions are given by (χk := 2kπi/L, L := log 2)

$1(t) =
1

L

∑
k 6=0

Γ (−1− χk) e2kπit, (8)

$2(t) = − 1

L

∑
k 6=0

(
1− χk

2

)
Γ(−χk)e2kπit,
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Fig. 3: Two typical random DSTs.
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Fig. 4: Two random DSTs of 1000 nodes rendered differently. For more graphical renderings of random DSTs, see
the first author’s webpage algo.stat.sinica.edu.tw.

http://algo.stat.sinica.edu.tw
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respectively. Here Γ denotes the Gamma function. Thus we see roughly that random digital search
trees under the unbiased Bernoulli model are highly balanced in shape. An important feature of the
periodic functions is that they are marked by very small amplitudes of fluctuation: |$1(t)| ≤ 3.4× 10−8

and |$2(t)| ≤ 3.4 × 10−6. Such a quasi-flat (or smooth) behavior may in practice be very likely to lead
to wrong conclusions as they are hardly visible from simulations of moderate sample sizes.

2 3 4 5 6 7 8 9

0.1

0.2

−0.1

−0.2

−0.3

1 10

V(Xn)/n

E(Xn)/(n+ 1)− log2 n

Fig. 5: A plot of E(Xn)/(n+ 1)− log2 n in log-scale (the decreasing curve using the y-axis on the right-hand side),
and that of V(Xn)/n in log-scale (the increasing curve using the y-axis on the left-hand side).

Let

Qk :=
∏

1≤j≤k

(
1− 1

2j

)
, and Q(z) :=

∏
j≥1

(
1− z

2j

)
. (9)

In particular, Q(1) = Q∞. The variance was computed in [42] by a direct second-moment approach and
the result is

V(Xn) = n(Ckps +$kps(log2 n)) +O(log2 n),
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where $kps(t) is again a 1-periodic, zero-mean function and the mean value Ckps is given by (L := log 2)

Ckps = − 28

3L
− 39

4
+

π2

2L2
+

2

L2
− 2Q∞

L
− 2

∑
`≥1

`2`

(2` − 1)2
+

2

L

∑
`≥1

1

2` − 1

− 2

L

∑
`≥3

(−1)`+1(`− 5)

(`+ 1)`(`− 1)(2` − 1)

+
2

L

∑
`≥1

(−1)`2−(`+1
2 )

L(1− 2−`+1)/2− 1

1− 2−`
−
∑
r≥2

(−1)r+1

r(r − 1)(2r+` − 1)


+
∑
`≥3

∑
2≤r<`

(
`+ 1

r

)
Qr−2Q`−r−1

2`Q`

∑
j≥`+1

1

2j − 1
− 2

[
$

[1]
1 $

[2]
2

]
0
−
[
($

[1]
1 )2

]
0

+ 2
∑
`≥2

1

2`Q`

∑
r≥0

(−1)r2−(r+1
2 )

Qr
Qr+`−2×

×

{
−
∑
j≥1

1

2j+r+`+2 − 1

2` − `− 2 +
∑

2≤i<`

(
`+ 1

i

)
1

2r+i−1 − 1


+

1

(1− 2−`−r)2
+

`+ 1

(1− 21−`−r)2
− 1

L(1− 21−`−r)

−
∑

2≤j≤`+1

(
`+ 1

j

)
1

2r+j−1 − 1
+

1

L

∑
1≤j≤`+1

(
`+ 1

j

)
1

2r+j − 1

+
1

L

∑
0≤j≤`+1

(
`+ 1

j

)∑
i≥1

(−1)i

(i+ 1)(2r+j+i − 1)

}
.

Here [$1$2]0 denotes the mean value of the function $1(t)$0(t) over the unit interval. The long ex-
pression obviously shows the complexity of the asymptotic problem.

We show that this long expression can be largely simplified. Before stating our result, we mention
that the asymptotic normality of Xn (in the sense of convergence in distribution) was first proved in [35]
by a complex-analytic approach; for other approaches, see [59] (martingale difference), [31] (method of
moments), [52] (contraction method).

A new asymptotic approximation to V(Xn). Define

G2(ω) = Q∞
∑

j,h,`≥0

(−1)j2−(j+1
2 )+j(ω−2)

QjQhQ`2h+`
ϕ(ω; 2−j−h + 2−j−`), (10)

where for 0 < <(ω) < 3 and x > 0

ϕ(ω;x) :=

∫ ∞
0

sω−1

(s+ 1)(s+ x)2
ds,
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which, by the relation∫ ∞
0

sω−1

s+ 1
ds =

π

sin(πω)
= Γ(ω)Γ(1− ω) (0 < <(ω) < 1),

can be represented as

ϕ(ω;x) =


π
(
1 + xω−2((ω − 2)ξ + 1− ω

)
(x− 1)2 sin(πω)

, if x 6= 1;

π(ω − 1)(ω − 2)

2 sin(πω)
, if x = 1.

The last expression provides indeed a meromorphic continuation of ϕ(ω;x) into the whole complex ω-
plane whenever x > 0. In particular,

ϕ(2;x) :=


x− log x− 1

(x− 1)2
, if x 6= 1;

1

2
, if x = 1.

Theorem 2.1 The variance of the total path-length of random DSTs of n nodes satisfies

V(Xn) = n(Ckps +$kps(log2 n)) +O(1), (11)

where

Ckps =
G2(2)

log 2
=

Q∞
log 2

∑
j,h,`≥0

(−1)j2−(j+1
2 )

QjQhQ`2h+`
ϕ(2; 2−j−h + 2−j−`),

and $kps has the Fourier series expansion

$kps(t) =
1

log 2

∑
k∈Z\{0}

G2(2 + χk)

Γ(2 + χk)
e2kπit,

which is absolutely convergent.

One can derive more precise asymptotic expansions for V(Xn) by the same approach we use. We content
ourselves with (11) for convenience of presentation.

Note that

G2(2 + χk)

Γ(2 + χk)
= Γ(−1− χk)Q∞

∑
j,h,`≥0

(−1)j2−(j+1
2 )

QjQhQ`2h+`
λk(2−j−h + 2−j−`),

where

λk(t) :=


1− tχk(1 + χk(1− t))

(1− t)2
, if t 6= 1;

χk(χk − 1)

2
, if t = 1.
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Thus the Fourier series is absolutely convergent by the order estimate (see [18])

|Γ(c+ it)| = O
(
|t|c−1/2e−π|t|/2

)
(|t| → ∞). (12)

Numerically, Ckps ≈ 0.26600 36454 05936 . . . , in accordance with that given in [42]. Also |$kps(t)| ≤
1.9× 10−5.

Sketch of our approach. Following the discussions in Introduction, we first prove that the Poisson-
Charlier expansion for the mean and that for the second moment are not only identities but also asymptotic
expansions. For that purpose, it proves very useful to introduce the following notion, which we term JS-
admissible functions (following the survey paper [36] by Jacquet and Szpankowski). This is reminiscent
of the classical H-admissible (due to Hayman) or HS-admissible (due to Harris and Schoenfeld) functions;
see [28, §VIII.5].

Once we prove the asymptotic nature of the Poisson-Charlier expansions for the mean and the second
moment, it remains, according again to the discussions in Introduction, to derive more precise asymptotics
for the function Ṽ (as defined in (4)), for which we will use first the Laplace transforms, normalize the
Laplace transform properly, and then apply the Mellin transform. Such an approach will turn out to be
very effective and readily applicable to more general cases such as bucket DSTs, which is discussed in
details in the next section. The approach parallels closely in essence that introduced by Flajolet and
Richmond in [24], which starts from the ordinary generating function, followed by an Euler transform, a
proper normalization and the Mellin transform, and then conclude by singularity analysis; see also [10].
The path we take, however, offers additional operational advantages, as will be clear later. See Figure 7
for a diagrammatic illustration of the two analytic approaches.

2.3 Analytic de-Poissonization and JS-admissibility
The fundamental differential-functional equations for the analysis of random DSTs is of the form

f̃(z) + f̃ ′(z) = 2f̃(z/2) + g̃(z),

with suitably given initial value f(0) and g̃. For such functions, it turns out that the asymptotic nature
of the Poisson-Charlier expansions for the coefficients (or de-Poissonization) can be justified in a rather
systematic way by the introduction of the notion of JS-admissible functions.

Here and throughout this paper, the generic symbol ε, ε′ ∈ (0, 1) always represents an arbitrarily small
constants whose values are immaterial and may differ from one occurrence to another.

Definition 1 An entire function f̃ is said to be JS-admissible, denoted by f̃ ∈ JS , if the following two
conditions hold for |z| ≥ 1.

(I) There exist α, β ∈ R such that uniformly for | arg(z)| ≤ ε,

f̃(z) = O
(
|z|α(log+ |z|)β

)
,

where log+ x := log(1 + x).

(O) Uniformly for ε ≤ | arg(z)| ≤ π,

f(z) := ez f̃(z) = O
(
e(1−ε′)|z|

)
.
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For convenience, we also write f̃ ∈JSα,β to indicate the growth order of f̃ inside the sector | arg(z)| ≤
ε.

Note that if f̃ satisfies condition (I), then, by Cauchy’s integral representation for derivatives (or by
Ritt’s theorem; see [54, Ch. 1, § 4.3]), we have,

f̃ (k)(z) = O

(∮
|w−z|=ε|z|

|w|α|(log+ |w|)β

|w − z|k+1
|dw|

)
= O

(
|z|α−k(log+ |z|)β

)
.

Proposition 2.2 Assume f̃ ∈ JSα,β . Let f(z) := ez f̃(z). Then the Poisson-Charlier expansion (1) of
f (n)(0) is also an asymptotic expansion in the sense that

an := f (n)(0) = n![zn]f(z) = n![zn]ez f̃(z)

=
∑

0≤j<2k

f̃ (j)(n)

j!
τj(n) +O

(
nα−k (log n)

β
)
,

for k = 1, 2, . . . .

Proof: (Sketch) Starting from Cauchy’s integral formula for the coefficients, the lemma follows from
a standard application of the saddle-point method. Roughly, condition (O) guarantees that the integral
over the circle with radius n and argument satisfying ε ≤ | arg(z)| ≤ π is negligible, while condition (I)
implies smooth estimates for all derivatives (and thus error terms). 2

The polynomial growth of condition (I) is sufficient for all our uses; see [36] for more general versions.
The real advantage of introducing admissibility is that it opens the possibility of developing closure

properties as we now discuss.

Lemma 2.3 Let m be a nonnegative integer and α ∈ (0, 1).

(i) zm, e−αz ∈JS .

(ii) If f̃ ∈JS , then f̃(αz), zmf̃ ∈JS .

(iii) If f̃ , g̃ ∈JS , then f̃ + g̃ ∈JS .

(iv) If f̃ ∈JS , then the product P̃ f̃ ∈JS , where P̃ is a polynomial of z.

(v) If f̃ , g̃ ∈JS , then h̃ ∈JS , where h̃(z) := f̃(αz)g̃((1− α)z).

(vi) If f̃ ∈JS , then f̃ ′ ∈JS , and thus f̃ (m) ∈JS .

Proof: Straightforward and omitted. 2

Specific to our need for the analysis of DSTs is the following transfer principle.
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Proposition 2.4 Let f̃(z) and g̃(z) be entire functions satisfying

f̃(z) + f̃ ′(z) = 2f̃(z/2) + g̃(z), (13)

with f(0) = 0. Then
g̃ ∈JS if and only if f̃ ∈JS .

Proof: Assume g̃ ∈JS . We check first the condition (O) for f̃ . Let f(z) := ez f̃(z) and g(z) := ez g̃(z).
By (13),

f ′(z) = 2ez/2f(z/2) + g(z).

Consequently, since f(0) = 0,

f(z) =

∫ z

0

(
2et/2f(t/2) + g(t)

)
dt = z

∫ 1

0

(
2etz/2f(tz/2) + g(tz)

)
dt. (14)

Now define
B(r) := max

z∈Cr,ε
|f(z)|,

where
Cr,ε := {z : |z| ≤ r, ε ≤ | arg(z)| ≤ π}, (r ≥ 0; 0 < ε < π/2).

Then, by (14), we have

B(r) ≤ r
∫ 1

0

(
2etr cos(ε)/2B(tr/2) + |g(tr)|

)
dt

=

∫ r

0

(
2et cos(ε)/2B(t/2) +O

(
e(1−ε)t

))
dt

≤ Cer cos(ε)/2B(r/2) +O
(
e(1−ε)r

)
,

whereC = 4/ cos ε > 1. This suggests that we define a majorant functionK(r) ofB(r) byK(r) = O(1)
for r ≤ 1 and for r ≥ 1

K(r) = Cer cos(ε)/2K(r/2) + h(r),

where h is an entire function satisfying h(r) = O(1) for r ≤ 1 and h(r) = O
(
e(1−ε)r) for r ≥ 1. Let

K̃(r) := e−r cos(ε)K(r) and h̃(r) := e−r cos(ε)h(r). Then since cos ε − 1 + ε > 0 for ε ∈ (0, 1), we
obtain

K̃(r) = CK̃(r/2) + h̃(r), h̃(r) = O(1).

Thus if we choose m = dlog2 re such that 2m ≥ r and iterate m times the functional equation, then we
obtain the estimate

K̃(r) =
∑

0≤k≤m

Ckh̃(r/2k) + Cm+1K̃(r/2m+1)

= O

 ∑
r/2k>1

Ck + Cm


= O

(
rlog2 C

)
.
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Thus
B(r) = O

(
rlog2 Cer cos ε

)
.

which establishes condition (O).
Our proof for f̃ satisfying (I) proceeds in a similar manner and starts again from (14) but of the form

f̃(z) = z

∫ 1

0

e−(1−t)z
(

2f̃(tz/2) + g̃(tz)
)

dt.

Now, define
B̃(r) := max

z∈Sr,ε
|f̃(z)|,

where
Sr,ε := {z : |z| ≤ r, | arg(z)| ≤ ε}, (r ≥ 0; 0 < ε < π/2).

Then

B̃(r) ≤ r
∫ 1

0

e−(1−t)r cos ε
(

2B̃(tr/2) + |g̃(tr)|
)

dt

=

∫ r

1

(
2e−(r−t) cos εB̃(t/2) +O

(
e−(r−t) cos εtα(log+ t)

β
))

dt+O(1)

≤ CB̃(r/2) +O
(
rα(log+ r)

β + 1
)
,

where C = 2/ cos ε > 2. The same majorization argument used above for (O) then leads to

B̃(r) =


O(rlog2 C), if α < log2 C;

O(rlog2 C(log+ r)
β+1), if α = log2 C;

O
(
rα(log+ r)

β
)
, if α > log2 C.

This proves (I) for f̃ .
The necessity part follows trivially from Lemma 2.3. 2

The estimates we derived of asymptotic-transfer type are indeed over-pessimistic when 1 ≤ α ≤
log2 C, but they are sufficient for our use. The true orders are those with ε→ 0, which can be proved by
the Laplace-Mellin-de-Poissonization approach we use later.

Lemma 2.3 and Proposition 2.4 provide very effective tools for justifying the de-Poissonization of
functions satisfying the equation (13), which is often carried out through the use of the increasing-domain
argument (see [36]). The latter argument is also inductive in nature and similar to the one we are devel-
oping here, although it is less “mechanical” and less systematic.
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2.4 Generating functions and integral transforms
Since our approach is purely analytic and relies heavily on generating functions, we first derive in this
subsection the differential-functional equations we will be working on later. Then we apply the de-
Poissonization tools we developed to the Poisson generating functions of the mean and the second moment
and justify the asymptotic nature of the corresponding Poisson-Charlier expansions. Then we sketch the
asymptotic tools we will follow based on the Laplace and Mellin transforms.

Generating functions. In terms of the moment generating function Mn(y) := E(eXny), the recurrence
(6) translates into

Mn+1(y) = eny2−n
∑

0≤j≤n

(
n

j

)
Mj(y)Mn−j(y), (n ≥ 0), (15)

with M0(y) = 1.
Now consider the bivariate exponential generating function

F (z, y) :=
∑
n≥0

Mn(y)

n!
zn.

Then by (15),
∂

∂z
F (z, y) = F

(
eyz

2
, y

)2

,

and the Poisson generating function F̃ (z, y) := e−zF (z, y) satisfies the differential-functional equation

F̃ (z, y) +
∂

∂z
F̃ (z, y) = e(ey−1)zF̃

(
eyz

2
, y

)2

, (16)

with F̃ (0, y) = 1. No exact solution of such a nonlinear differential equation is available; see [35] for an
asymptotic approximation to F̃ for y near unity.

Mean and second moment. Let now

F̃ (z, y) :=
∑
m≥0

f̃m(z)

m!
ym,

where f̃m(z) denotes the Poisson generating function of E(Xm
n ). Then we deduce from (16) that

f̃1(z) + f̃ ′1(z) = 2f̃1(z/2) + z, (17)

f̃2(z) + f̃ ′2(z) = 2f̃2(z/2) + 2f̃1(z/2)2 + 4zf̃1(z/2) + 2zf̃ ′1(z/2) + z + z2, (18)

with the initial conditions f̃1(0) = f̃2(0) = 0.
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Proposition 2.5 The Poisson-Charlier expansion for the mean and that for the second moment are both
asymptotic expansions

E(Xn) =
∑

0≤j<2k

f̃
(j)
1 (n)

j!
τj(n) +O

(
n−k+1

)
,

E(X2
n) =

∑
0≤j<2k

f̃
(j)
2 (n)

j!
τj(n) +O

(
n−k+2(log n)2

)
,

for k = 1, 2, . . . .

Proof: (Sketch) By Lemma 2.3 and Proposition 2.4, we see that both f̃1, f̃2 ∈ JS , and thus we can
apply Proposition 2.2. Indeed the proof of Proposition 2.4 provides already crude bounds for the growth
order of f̃1, f̃2. The more precise estimates f̃1(z) � |z|| log z| and f̃2(z) � |z|2| log z|2 for z inside the
sector {z : | arg(z)| ≤ ε} will be provided later in the next two subsections. 2

An asymptotic approach based on Laplace and Mellin transforms. Once the de-Poissonization steps
are justified, all that remains for the proof of Theorem 2.1 is to derive more precise asymptotic approxi-
mations to f̃1 and Ṽ (as defined in (4)). The approach we use begins with a more precise characterization
of f̃1(z). Both f̃1 and Ṽ satisfy a differential-functional equation of the form

f̃(z) + f̃ ′(z) = 2f̃(z/2) + g̃(z),

with the initial condition f̃(0) = 0. To derive the asymptotics of f̃ for large complex z, we proceed along
the following principal steps; see also [10].

Laplace transform: The Laplace transform of f̃ satisfies

(s+ 1)L [f̃ ; s] = 4L [f̃ ; 2s] + L [g̃; s], (19)

which exists and defines an analytic function if g̃ grows at most polynomially for large |z|.

Normalizing factor: Dividing both sides of (19) by Q(−2s) =
∏
j≥0(1 + s/2j) gives a functional equa-

tion of the form

L̄ [f̃ ; s] = 4L̄ [f̃ ; 2s] +
L [g̃; s]

Q(−2s)
,

where L̄ [f̃ ; s] := L [f̃ ; s]/Q(−s).

Mellin transform: The Mellin transform of L̄ then satisfies

M [L̄ [f̃1; s];ω] =
1

1− 22−ωM

[
L [g̃; s]

Q(−2s)
;ω

]
.

Inverting the process. We first derive the local behavior of L̃ [f̃ ; s] for small s by the Mellin inversion
(often by calculus of residues after justification of analytic properties), and then the asymptotic
behavior of f̃(z) for large z is derived by the Laplace inversion, similar to singularity analysis.
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2.5 Expected internal path-length of random DSTs
We consider in details in this subsection the expected value µn := E(Xn) of the total internal path-length,
paving the way for the asymptotic analysis of the variance. Starting from either the equation (17) or the
recurrence

µn+1 = 21−n
∑

0≤j≤n

(
n

j

)
µj + n (n ≥ 0)

with µ0 := 0, there are several approaches to the asymptotics of µn. We will briefly describe the one
using integral representation of finite differences (or Rice’s integrals) and then present the Laplace and
Mellin transforms we will use, which, as will become clear, is essentially the Flajolet-Richmond approach
(see [24]).

Rice’s integral representation. By (17), we have, with µ̃n := n![zn]f̃1(z),

µ̃n+1 = −
(
1− 21−n) µ̃n (n ≥ 0),

with µ̃0 = 0, which by iteration yields

µ̃n = (−1)nQn−2, Qn :=
∏

1≤j≤n

(
1− 2−j

)
. (20)

Thus by Rice’s formula ([27])

µn := E(Xn) =
∑

2≤j≤n

(
n

j

)
µ̃j

=
1

2πi

∫
( 3
2 )

Γ(n+ 1)Γ(−s)
Γ(n+ 1− s)

· Q(1)

(1− 21−s)Q(21−s)
ds,

where the integration path
∫

(c)
is along the vertical line with real part equal to c and Q is defined in (9).

We then obtain (7) by standard arguments; see [26] or [50] for details.
This approach readily gives the approximation (7) for the mean and can be refined to obtain a full

asymptotic expansion. However, its extension to the variance becomes extremely messy, as shown in
[42].

Laplace transform. We first show that the asymptotics of f̃1(z) can be derived through a direct use of
the Laplace and Mellin transforms, which relies on several ad hoc steps that are not easily extended. A
more general procedure will be developed below.

By (17), we see that the Laplace transform of f1(z) satisfies the functional equation

(s+ 1)L [f̃1; s] = 4L [f̃1; 2s] + s−2, (21)

which exists and is analytic in C \ (−∞, 0].
By dividing both sides by s+ 1 and by iteration, we get

L [f̃1; s] =
1

s2

∑
j≥0

1

(s+ 1) · · · (2js+ 1)
. (22)
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On the other hand, from (20), we have

L [f̃1; s] =

∫ ∞
0

e−sz
∑
n≥0

µ̃n
n!
zndz

=
∑
n≥0

(−1)nQns
−n−3.

This implies the identity ∑
n≥0

(−1)nQn
sn+1

=
∑
j≥0

1

(s+ 1) · · · (2js+ 1)
.

However, neither form is useful for our asymptotic purpose.
Now by partial fraction expansion, we obtain

1

(s+ 1) · · · (2js+ 1)
=
∑

0≤`≤j

(−1)j−`2−(j−`+1
2 )−`

(s+ 2−`)Q`Qj−`
.

Thus

L [f̃1; s] =
1

s2

∑
j≥0

∑
0≤`≤j

(−1)j−`2−(j−`+1
2 )−`

(s+ 2−`)Q`Qj−`

=
1

s2

∑
`≥0

1

Q`(2`s+ 1)

∑
j≥0

(−1)j2−(j+1
2 )

Qj
.

Note that ∑
j≥0

2js

(s+ 1) · · · (2js+ 1)
= 1.

By the Euler identity ∑
j≥0

q(
j
2)zj

(1− q) · · · (1− qj)
=
∏
k≥0

(
1 + qkz

)
,

we see that ∑
j≥0

(−1)j2−(j+1
2 )

Qj
= Q(1) = Q∞ ≈ 0.28878809 . . .

This gives

L [f̃1; s] =
Q∞
s2

∑
`≥0

1

Q`(2`s+ 1)
,

and then

f̃1(z) = Q∞
∑
`≥0

2`

Q`

(
e−z/2

`

− 1 +
z

2`

)
. (23)
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Consequently,

µn = Q∞
∑
`≥0

2`

Q`

(
(1− 2−`)n − 1 + 2−`n

)
.

Asymptotically, we have, by (23) and the identity

1

Q(z)
=
∏
j≥1

1

1− z/2j
=
∑
`≥0

z`

Q`2`
(|z| < 2), (24)

the Mellin integral representation

f̃1(z) =
1

2πi

∫
(−3/2)

Q(1)Γ(s)z−s

(1− 2s+1)Q(2s+1)
ds,

from which we derive the asymptotic approximation

f̃1(z) = (z + 1) log2 z + z

(
γ − 1

log 2
+

1

2
− c1 +$1(log2 z)

)
+O(1), (25)

uniformly for |z| → ∞ and | arg(z)| ≤ π/2 − ε, where $1 is given in (8). (As usual, we use the
asymptotic estimate (12) for the Gamma function.)

Laplace and Mellin transforms. We now re-do the analysis for f̃1(z) in a more general way that can
be easily extended to other cases.

We again start from (21) and consider

L̄ [f̃1; s] :=
L [f̃1; s]

Q(−s)
,

where Q(z) is defined in (9). Dividing both sides of (21) by Q(−2s) yields

L̄ [f̃1; s] = 4L̄ [f̃1; 2s] +
1

Q(−2s)s2
. (26)

We now apply the Mellin transform. Note that we have, by the fact that X0 = X1 = 0 and the proof of
Proposition 2.4,

f̃1(z) =

{
O(z2), if z → 0+;

O(z1+ε), if z →∞.

Then

L [f̃1; s] =

{
O(s−2−ε), as s→ 0+;

O(s−3), as s→∞.
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On the other hand, by the Mellin transform,

logQ(−2s) =
∑
j≥0

log
(

1 +
s

2j

)
=

1

2πi

∫
(− 1

2 )

πs−w

(1− 2w)w sinπw
dw

=
(log s)2

2 log 2
+

log s

2
+
∑
k∈Z

qks
−χk +O(|s|−1) (27)

uniformly for |s| → ∞ and | arg(s)| ≤ π − ε, where χk := 2kπi/ log 2,

q0 =
log 2

12
+

π2

6 log 2

and
qk =

1

2k sinh(2kπ/ log 2)
(k 6= 0).

This asymptotic expansion, together with the Taylor expansion

Q(−2s) = 1 +O(|s|), (|s| → 0),

gives rise to

L̄ [f̃1; s] =

{
O(s−2−ε), as s→ 0+;

O(s−M ), as s→∞,

where M > 0 is an arbitrary real number. Consequently, the Mellin transform of L̄ [f̃1; s], denoted by
M [L̄ ;ω], exists in the half-plane <(ω) ≥ 2 + ε. Then by applying the Mellin transform to (26), we
obtain

M [L̄ ;ω] =
G1(ω)

1− 22−ω , (<(ω) > 2),

where

G1(ω) :=

∫ ∞
0

sω−3

Q(−2s)
ds =

πQ(2ω−2)

Q(1) sinπω
=
Q(2ω−2)

Q(1)
Γ(ω)Γ(1− ω), (28)

for <(ω) > 2; see [24].

Inverse Mellin and inverse Laplace transforms. We can now apply successively the inverse Mellin
and then Laplace transforms to derive the asymptotics of f̃1(z). Observe that G1(ω) has a simple pole at
ω = 2. By (28) or Proposition 5 in [22], we obtain

|G1(c+ it)| = O
(
e−(π−ε)|t|

)
,

for large |t| and c ∈ R. Then by the calculus of residues,

L̄ [f̃1; s] =
1

s2
log2

1

s
+

1

s2

1

2
− c1 +

1

log 2

∑
k∈Z\{0}

G1(2 + χk)s−χk

+O(|s|−1),
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uniformly for |s| → 0 and | arg(s)| ≤ π − ε. Using the expansion

Q(−s) = 1 + s+ (|s|2) (|s| ∼ 0),

we see that

L [f̃1; s] =
1 + s

s2
log2

1

s
+

1

s2

1

2
− c1 +

1

log 2

∑
k∈Z\{0}

G1(2 + χk)s−χk

+O(|s|−1),

uniformly for |s| → 0 and | arg(s)| ≤ π − ε.
Finally, we consider the inverse Laplace transform. The following simple result is very useful for our

purposes.

Proposition 2.6 Let f̃(z) be a function whose Laplace transform exists and is analytic in C \ (−∞, 0].
Assume that

L [f̃ ; s] =


O (|s|−α| log |s+ 1||m) ,

cs−ω(− log s)m,

o(|s|−α| log |s+ 1||m),

(29)

uniformly for |s| → 0 and | arg(s)| ≤ π − ε, where α ∈ R, ω ∈ C and m = 0, 1, . . . . If L [f̃ ; s] satisfies

|L [f̃ ; s]| = O
(
|s|−1−ε) , (30)

as |s| → ∞ in | arg(s)| ≤ π − ε, then

f̃(z) =


O
(
|z|α−1(log |z|)m

)
,

czω−1
∑

0≤j≤m

(
m

j

)
(log z)m−j

∂j

∂ωj
1

Γ(ω)
,

o
(
|z|α−1(log |z|)m

)
,

respectively, where the O- and o-terms hold uniformly for |z| → ∞ and | arg(z)| ≤ π/2− ε.

Proof: Let L̃ (s) = L [f̃ ; s]. Then by the inverse Laplace transform,

f̃(z) =
1

2πi

∫
(1)

ezsL̃ (s) ds =
1

2πi

∫
H
ezsL̃ (s) ds,

where H is the Hankel contour consisting of the two rays te±iε ± i/|z|,−∞ < t ≤ 0 and the semicircle
exp(iϕ)/|z|,−π/2 ≤ ϕ ≤ π/2; see Figure 6.

Assume from now on |z| is sufficiently large and lies in the sector with | arg(z)| ≤ π/2− ε. We prove
only the O-case, the other two cases being similar. For simplicity, we consider only the case m = 0, the
other cases being easily extended.

We split the above integral alongH into two parts

1

2πi

∫
H
ezsL̃ (s) ds =

1

2πi

∫
H>

ezsL̃ (s) ds+
1

2πi

∫
H⊃

ezsL̃ (s) ds,
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<(s)

=(s)

ε

H

1
|z|

Fig. 6: The contourH.

where H> comprises the two rays teiε ± i/|z|,−∞ < t ≤ −T with T > 1 a fixed constant and H⊃
represents the remaining contour.

The integral alongH> is easily estimated

1

2πi

∫
H>

ezsL̃ (s) ds = O

(∫ −T
−∞

e<(|z|ei arg(z)(teiε+i/|z|))|t|−1−ε dt

)

= O

(∫ ∞
T

t−1−εe−|z|t cos(arg(z)+ε) dt

)
= O

(
|z|εe−c|z|T

)
,

the O-term holding uniformly for |z| → ∞ provided that | arg(z)| + ε < π/2, where c > 0 is a suitable
constant.

For the second integral, we use (29). Then the integral along the semicircle is bounded as follows.

1

2π|z|

∫ π/2

−π/2
eze

iθ/|z|+iθL̃ (eiθ/|z|) dθ = O
(
|z|α−1

)
,

uniformly for |z| → ∞. For the remaining part t± i/|z|,−T < t ≤ 0, we have

1

2πi

∫ 0

−T
ez(t±i/|z|)L̃ (t± i/|z|) dt = O

(
|z|α

∫ 0

−T

ec|z|t

(|z|2t2 + 1)α/2
dt

)
= O

(
|z|α−1

∫ ∞
0

e−cu

(u2 + 1)α/2
du

)
= O

(
|z|α−1

)
,

uniformly for |z| → ∞, where c > 0 is a suitable constant. This completes the proof. 2

Note that the inverse Laplace transform of s−2 log(1/s) is z log z − (1 − γ)z. This, together with a
combined use of Proposition 2.6, leads to (25).

The justification of the estimate (30) is easily performed by using the relation (31) below.
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The Flajolet-Richmond approach [24]. Instead of the Poisson generating function, this approach starts
from the ordinary generating function A(z) :=

∑
n µnz

n.

– Then the Euler transform(ii)

Â(s) :=
1

s+ 1
A

(
1

s+ 1

)
satisfies

(s+ 1)Â(s) = 4Â(2s) + s−2,

identical to (21).

– The normalized function Ā(s) := Â(s)/Q(−s) satisfies

Ā(s) = 4Ā(2s) +
1

s2Q(−2s)
,

again identical to (26).

– The Mellin transform of Ā satisfies (<(ω) > 2)

M [Ā;ω] =
G1(ω)

1− 22−ω ,

where G1(ω) is as defined in (28).

Then invert the process by considering first the Mellin inversion, deriving asymptotics of

Ā(s) =
1

2πi

∫
(5/2)

s−ω
G1(ω)

1− 22−ω dω,

as s→ 0 in C. Then deduce asymptotics of

A(z) =
1

z
Â

(
1

z
− 1

)
,

as z → 1. Finally, apply singularity analysis (see [23]) to conclude the asymptotics of µn.
The crucial reason why the two approaches are identical at certain steps is that the Laplace transform

of a Poisson generating function is essentially equal to the Euler transform of an ordinary generating
function; or formally, ∫ ∞

0

e−sz
∑
n≥0

an
n!
zn dz =

∑
n≥0

an(s+ 1)−n−1

=
1

s+ 1
A

(
1

s+ 1

)
. (31)

(ii) For a better comparison with the approach we use, our Â differs from the usual Euler transform by a factor of s.
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EGF
f(z)

Laplace
transform

of e−zf(z)
=

Euler
transform
of A(z)

OGF
A(z)

Laplace
Q(−s)

Euler
Q(−s)

Mellin
transform

asymptotics

of Laplace
Q(−s)

asymptotics
of f̃(z) as
|z| → ∞

de-Poi by
saddle-point

asymptotics
of Euler

Q(−s)

asymptotics
of A(z)

as z ∼ 1

singularity
analysis

Fig. 7: A diagrammatic comparison of the major steps used in the Laplace-Mellin (left-half) approach and the
Flajolet-Richmond (right-half) approach. Here EGF denotes “exponential generating function”, OGF stands for
“ordinary generating function” and de-Poi is the abbreviation for de-Poissonization.

Thus the simple result in Proposition 2.6 closely parallels that in singularity analysis. While identical at
certain steps, the two approaches diverge in their final treatment of the coefficients, and the distinction
here is typically that between the saddle-point method and the singularity analysis, a situation reminiscent
of the use before and after Lagrange’s inversion formula; see for instance [28].

The relation (31) implies that the order estimate (30) for the Laplace transform at infinity can be easily
justified for all the generating functions we consider in this paper since A(0) = 0, implying that A(z) =
O(|z|) as |z| → 0.

This comparison also suggests the possibility of developing de-Poissonization tools by singularity anal-
ysis, which will be investigated in details elsewhere.

2.6 Variance of the internal path-length
In this section, we apply the Laplace-Mellin-de-Poissonization approach to the Poissonized variance with
correction

Ṽ (z) := f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2,

aiming at proving Theorem 2.1. The starting point of focusing on Ṽ instead of on f̃2 removes all heavy
cancellations involved when dealing with the variance, a key step differing from all previous approaches.

Laplace and Mellin transform. The following lemma will be useful.

Lemma 2.7 If {
f̃1(z) + f̃ ′1(z) = 2f̃1(z/2) + h̃1(z),

f̃2(z) + f̃ ′2(z) = 2f̃2(z/2) + h̃2(z),

where all functions are entire with f̃1(0) = f̃2(0) = 0, then the function Ṽ (z) := f̃2(z)−f̃1(z)2−zf̃ ′1(z)2

satisfies
Ṽ (z) + Ṽ ′(z) = 2Ṽ (z/2) + g̃(z),

with Ṽ (0) = 0, where

g̃(z) = zf̃ ′′1 (z)2 + h̃2(z)− h̃1(z)2 − zh̃′1(z)2 − 4h̃1(z)f̃1(z/2)− 2zh̃′1(z)f̃ ′1(z/2)− 2f̃1(z/2)2.
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Proof: Straightforward and omitted. 2

By using the differential-functional equations (17) and (18) for f̃1(z) and f̃2(z), we see, by Lemma 2.7,
that

Ṽ (z) + Ṽ ′(z) = 2Ṽ (z/2) + zf̃ ′′1 (z)2, (32)

with Ṽ (0) = 0.
Before applying the integral transforms, we need rough estimates of Ṽ (z) near z = 0 and z =∞. We

have

Ṽ (z) =

{
O
(
z2
)
, as z → 0+;

O(z1+ε), as z →∞.
(33)

These estimates follow from

zf̃ ′′1 (z)2 =

{
O(|z|), as |z| → 0;

O(|z|−1), as |z| → ∞,
(34)

which in turn result from X0 = X1 = 0 and (25) (by the proof of condition (I) of Proposition 2.4).
Indeed, the proof there shows that the same bounds hold uniformly for z ∈ C with | arg(z)| ≤ π/2− ε.

We now apply the Laplace transform to both sides of (32). First, observe that the Laplace transform of
Ṽ (z) exists and is analytic in C \ (−∞, 0]. Then, by (32),

(s+ 1)L [Ṽ ; s] = 4L [Ṽ ; 2s] + g̃?(s),

where g̃?(s) := L [zf̃ ′′1 ; s]. Next the normalized Laplace transform

L̄ [Ṽ ; s] :=
L [Ṽ ; s]

Q(−s)

satisfies

L̄ [Ṽ ; s] = 4L̄ [Ṽ ; 2s] +
g̃?(s)

Q(−2s)
.

By (33), we obtain

L [Ṽ ; s] =

{
O(s−2−ε), as s→ 0+;

O(s−3), as s→∞.

From this and the asymptotic expansion (27) of Q(−2s), it follows that the Mellin transform of L̄ [Ṽ ; s]
exists in the half-plane <(ω) ≥ 2 + ε. Consequently,

M [L̄ [Ṽ ; s];ω] =
G2(ω)

1− 22−ω , (<(ω) > 2),

where

G2(ω) := M

[
g̃?(s)

Q(−2s)
;ω

]
=

∫ ∞
0

sω−1

Q(−2s)

∫ ∞
0

e−zszf̃ ′′1 (z)2 dz ds. (35)
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By (23), we have

zf̃ ′′1 (z)2 = Q2
∞

∑
h,`≥0

1

QhQ`2h+`
ze−z/2

h−z/2` .

Substituting this and the partial fraction expansion

1

Q(−2s)
=

1

Q∞

∑
j≥0

(−1)j2−(j2)

Qj(s+ 2−j)
,

into (35), we obtain (10).

Inverse Mellin and inverse Laplace transforms. For the Mellin inversion, we need more precise ana-
lytic properties of G2(ω). By (34), we deduce that the Laplace transform g̃?(s) of zf̃ ′′1 (z)2 satisfies

g̃?(s) =

{
O(| log s|), as |s| → 0;

O(|s|−2), as |s| → ∞

uniformly in the cone | arg(s)| ≤ π − ε. Thus, by the asymptotic expansion (27) for Q(−2s) and
Proposition 5 in [22], we have

|G2(c+ it)| = O
(
e−(π−ε)|t|

)
,

for large |t| and c > 0. Also the Mellin transformG2 of g̃?(s)/Q(−2s) exists in the half-plane <(ω) > 0.
Consequently, by standard calculus of residues,

L̄ [Ṽ ; s] =
1

log 2

∑
k∈Z

G2(2 + χk)s−2−χk +O(|s|−ε),

uniformly for |s| → 0 and | arg(s)| ≤ π − ε. This in turn yields the following expansion for L [Ṽ ; s]

L [Ṽ ; s] =
1

log 2

∑
k∈Z

G2(2 + χk)s−2−χk +
1

log 2

∑
k∈Z

G2(2 + χk)s−1−χk +O(|s|−ε),

again uniformly for |s| → 0 and | arg(s)| ≤ π − ε.
Finally, standard Laplace inversion gives

Ṽ (z) =
z

log 2

∑
k∈Z

G2(2 + χk)

Γ(2 + χk)
zχk +

1

log 2

∑
k∈Z

G2(1 + χk)

Γ(1 + χk)
zχk +O(|z|ε−1), (36)

uniformly for |z| → ∞ and | arg(z)| ≤ π/2− ε.
Since f̃2(z) = Ṽ (z) + f̃1(z)2 + zf̃ ′1(z)2, we see from (36) and (25) that

f̃2(z) � f̃1(z)2 � |z|2 log2 |z| (| arg(z)| ≤ π/2− ε).

This proves Proposition 2.5 and Theorem 2.1 by straightforward expansion. More refined calculations
give

V(Xn) = Ṽ (n)− n

2
Ṽ ′′(n)− n2

2
f̃ ′′1 (n)2 +O(n−1),

the two terms following Ṽ (n) being both O(1) and periodic in nature. It is possible to further extend
the same idea and derive a full asymptotic expansion, which has also its identity nature; details will be
presented in a future paper.



134 Hsien-Kuei Hwang, Michael Fuchs and Vytas Zacharovas

3 Bucket Digital Search Trees
In this section, we extend the same approach to bucket digital search trees (b-DSTs) in which each node
can hold up to b keys. The construction rule is the same as DSTs, except that keys keep staying in a node
as long as its capacity remains less than b; see Figure 8 for a simple example with b = 2. DSTs correspond
to b = 1.

Note that when b ≥ 2 we can distinguish two different types of total path-length: the total path-length
of all keys (summing the distance between each key to the root over all keys), which will be referred to as
the total key-wise path-length (KPL) and the total path-length of all nodes (summing the distance between
each node to the root over all nodes, regardless of the number of keys in each node), referred to as the
total node-wise path-length (NPL). When b = 1 the two total path-lengths coincide. For simplicity, we
will use KPL and NPL, dropping the collective adjective “total”. While the expected values of both TPLs
are of order n log n under the same independent Bernoulli model, their variances surprisingly turn out to
exhibit very different behavior; see Table 1.

010111

101011

100001

011011

111110

110111

010011

011110

000100

010111
010111
101011

100001011011
100001
111110

110111

011011
010011

011110000100

10

110

Fig. 8: A 2-DST with nine keys. The total key-wise path-length is equal to 4×1 + 3×2 = 10 and the total node-wise
path-length equals 2× 1 + 3× 2 = 8.

3.1 Key-wise path-length (KPL)
We assume the same independent Bernoulli model for the input strings. Let Xn denote the KPL in a
random b-DST built from n random stings. Then by definition and the independence model assumption

Xn+b
d
= XBn +X∗n−Bn + n, (n ≥ 0) (37)

with the initial conditions X0 = · · · = Xb−1 = 0. Here Bn ∼ Binomial(n, 1/2), Xn
d
= X∗n, and

Xn, X
∗
n, Bn are independent.

Known and new results. Hubalek [30] showed, by the Flajolet-Richmond approach, that the mean
satisfies

E(Xn) = (n+ b) log2 n+ n (c2 +$3(log2 n)) + c3 +$4(log2 n) +O
(
n−1 log n

)
,
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where c2, c3 are effectively computable constants and $3 and $4 are very smooth periodic functions. He
also proved that the variance is asymptotically linear

V(Xn) = n (Ch +$h(log2 n)) +O((log n)2),

where Ch is expressed in terms of a very long, involved expression and $h is a periodic function.
We improve this estimate by deriving a much simpler expression for the periodic function, including its

average value Ch. To state our result, we define the following functions. Let

g̃(z) :=

 ∑
0≤j≤b

(
b

j

)
f̃

(j)
1 (z)

2

+ z

 ∑
0≤j≤b

(
b

j

)
f̃

(j+1)
1 (z)

2

−
∑

0≤j≤b

(
b

j

)((
f̃2

1 (z)
)(j)

+
(
zf̃ ′1(z)2

)(j)
)
.

(38)

It is easily seen that g̃(z) is of the form

g̃(z) =
∑

2≤i1,i2≤b

g̃i1,i2 f̃
(i1)
1 (z)f̃

(i2)
1 (z) + z

∑
2≤i1,i2≤b+1

g̃′i1,i2 f̃
(i1)
1 (z)f̃

(i2)
1 (z), (39)

where g̃i1,i2 , g̃
′
i1,i2
≥ 0 are given explicitly by

g̃i1,i2 =

(
b

i1

)(
b

i2

)
−
(
b

i1

)(
b− i1
i2

)
− (b− i1 + 1)

(
b

i1 − 1

)(
b− i1
i2 − 1

)
,

g̃′i1,i2 =

(
b

i1 − 1

)(
b

i2 − 1

)
−
(

b

i1 − 1

)(
b− i1 + 1

i2 − 1

)
,

both coefficients being symmetric in i1 and i2. Define

G2(ω) =

∫ ∞
0

sω−1

Q(−2s)b

∫ ∞
0

e−zsg̃(z) dz ds,

which is well-defined for <(ω) > 0, as we will see later.

Theorem 3.1 The variance of the total key-wise path-length of random b-DSTs of n strings satisfies

V(Xn) = n (Ch +$h(log2 n)) +O(1), (40)

where

Ch =
G2(2)

log 2
=

1

log 2

∫ ∞
0

s

Q(−2s)b

∫ ∞
0

e−zsg̃(z) dz ds,

and

$h(t) =
1

log 2

∑
k∈Z\{0}

G2(2 + χk)

Γ(2 + χk)
e2kπit.

By straightforward truncations, expansions and approximations, we obtain the following numerical
values for b = 1, . . . , 5.

b 1 2 3 4 5
Ch 0.26600 0.13260 0.09004 0.06958 0.05781

More powerful means are needed to be developed if more degree of precision is required.
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Generating functions. From (37), it follows that the moment generating function Mn(y) := E(eXny)
can be recursively computed by the relation

Mn+b(y) =
eny

2n

∑
0≤j≤n

(
n

j

)
Mj(y)Mn−j(y) (n ≥ 0),

with Mn(y) = 1 for 0 ≤ n < b. The bivariate exponential generating function F (z, y) then satisfies the
equation

∂b

∂zb
F (z, y) = F

(
eyz

2
, y

)2

,

with F (j)(0, y) = 1 for 0 ≤ j < b, and we have the nonlinear equation for the Poisson generating function
F̃ (z, y) := e−zF (z, y)

∑
0≤j≤b

(
b

j

)
F̃ (j)(z, y) = e(ey−1)zF̃

(
eyz

2
, y

)2

, (41)

with F̃ (0, y) = 1.
From this form, the asymptotic analysis of the mean value and that of the variance proceed along

exactly the same line we developed in the previous section. Thus we briefly sketch the principal steps of
the analysis, leaving the details to the interested reader.

The expected value of Xn. From (41), we derive the following differential-functional equation for the
Poisson generating function of the mean∑

0≤j≤b

(
b

j

)
f̃

(j)
1 (z) = 2f̃1(z/2) + z,

with the initial conditions f̃ (j)
1 (0) = 0 for 0 ≤ j < b.

Before applying the Laplace-Mellin approach, we need first a transfer-type result similar to Proposi-
tion 2.4.

Proposition 3.2 Let f̃(z) and g̃(z) be entire functions satisfying∑
0≤j≤b

(
b

j

)
f̃ (j)(z) = 2f̃(z/2) + g̃(z), (42)

with f(0) = 0. Then
g̃ ∈JS ⇐⇒ f̃ ∈JS .
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Proof: (Sketch) The same proof as that for Proposition 2.4 applies mutatis mutandis to (42). The only
difference is that we now have

f (b)(z) = 2ez/2f(z/2) + g(z),

where f(z) := ez f̃(z) and g(z) := ez g̃(z), so that (14) has the extended representation

f(z) =
1

(b− 1)!

∫ z

0

(z − t)b−1
(

2et/2f(t/2) + g(t)
)

dt

=
zb

(b− 1)!

∫ 1

0

(1− t)b−1
(

2etz/2f(tz/2) + g(tz)
)

dt,

and

f̃(z) =
zb

(b− 1)!

∫ 1

0

(1− t)be−(1−t)z
(

2f̃(tz/2) + g̃(z)
)

dt.

All required estimates can be derived by the same arguments used there. 2

The Laplace transform of f̃1 now satisfies the functional equation

(s+ 1)bL [f̃1; s] = 4L [f̃1; 2s] + s−2,

for <(s) > 0. From this equation, we obtain

L [f̃1; s] =
1

s2

∑
j≥0

1

(s+ 1)b · · · (1 + 2js)b
,

which extends (22). From this series and partial fraction expansions, we can derive a close-form expres-
sion for f̃1(z), which becomes messy especially for large b. Define as before L̄ [f̃1; s] := L [f̃1; s]/Q(−s)b.
Then we obtain

L̄ [f̃1; s] = 4L̄ [f̃1; 2s] +
1

Q(−2s)bs2
.

This relation is almost the same as (26). Thus the same Mellin analysis given there carries over and we
deduce that

L [f̃1; s] =
1

s2
log2

1

s
+

1

s2

1

2
+

c4
log 2

+
1

log 2

∑
k∈Z\{0}

G1(2 + χk)s−χk


+
b

s
log

1

s
+O(|s|−1),

uniformly for |s| → 0 and | arg(s)| ≤ π − ε, where

G1(ω) :=

∫ ∞
0

sω−3

Q(−2s)b
ds,
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and

c4 := lim
ω→2

(
G1(ω)− 1

ω − 2

)
=

∫ 1

0

1

s

(
1

Q(−2s)b
− 1

)
ds+

∫ ∞
1

1

sQ(−2s)b
ds.

Consequently, by the Laplace inversion,

f̃1(z) = (z + b) log2 z + z

1

2
+
G1(2) + γ − 1

log 2
+

1

log 2

∑
k∈Z\{0}

G1(2 + χk)

Γ(2 + χk)
zχk

+O(1), (43)

uniformly for |z| → ∞ and | arg(z)| ≤ π/2− ε. From this and Propositions 3.2 and 2.2, we obtain

E(Xn) =
∑

0≤j<2k

f̃ (j)(n)

j!
τj(n) +O

(
n−1+k

)
,

for any k = 1, 2, . . . . Finally,

E(Xn) = (n+ b) log2 n+ n

1

2
+
G1(2) + γ − 1

log 2
+

1

log 2

∑
k∈Z\{0}

G1(2 + χk)

Γ(2 + χk)
nχk

+O(1).

Variance of Xn. The analysis here is again similar to that for the mean. Let f̃2(z) denote the Poisson
generating function of the second moment E(X2

n). Then, by (41),∑
0≤j≤b

(
b

j

)
f̃

(j)
2 (z) = 2f̃2(z/2) + 2f̃1(z/2)2 + 4zf̃1(z/2) + 2zf̃ ′1(z/2) + z + z2,

with the first b Taylor coefficients zero. Define again

Ṽ (z) = f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2.

Then Ṽ (z) satisfies ∑
0≤j≤b

(
b

j

)
Ṽ (j)(z) = 2Ṽ (z/2) + g̃(z),

where g̃(z) is given in (38).
By the representations (39) and (43), we have

g̃(z) =

{
O(|z|), as |z| → 0;

O(|z|−1), as |z| → ∞,

uniformly in the sector | arg(z)| ≤ π/2 − ε. This is similar to the corresponding estimate (34) in the
analysis of the variance in the previous section. The same procedure there applies and we deduce (40).
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3.2 Node-wise path-length (NPL)
We consider in this section the total node-wise path-length (NPL). Under the same independent Bernoulli
model, we still use Xn to denote the NPL in a random b-DST of n binary strings with node capacity
b ≥ 2. Also let Nn stand for the total number of nodes (space requirement) in random b-DST of n
strings. Despite its being one of the most natural shape measures for b-DSTs, the consideration of Xn

here seems to be new. For Nn, it is known that the distribution is asymptotically normal with the mean
and the variance both asymptotically n times a different smooth periodic function; see [31]. In contrast to
(40) for the variance of KPL, what is unexpected and surprising here is that the variance of Xn is of order
n(log n)2.

Theorem 3.3 Assume b ≥ 2. The mean of Nn and that of Xn satisfy the following asymptotic relations.{
E(Nn) = nP1,0(log2 n) +O(1),

E(Xn) = n(log2 n)P1,0(log2 n) + nP
[2]
0,1(log2 n) + (log2 n)P

[3]
0,1(log2 n) +O(1);

(44)

and the variances of Nn and Xn satisfy

V(Nn) = nP2,0(log2 n) +O(1),

Cov(Nn, Xn) = n(log2 n)P2,0(log2 n) + nP
[2]
1,1(log2 n) + (log n)P

[3]
1,1(log2 n) +O(1),

V(Xn) = n(log2 n)2P2,0(log2 n) + n(log2 n)P
[2]
0,2(log2 n) + nP

[3]
0,2(log2 n)

+ (log n)2P
[4]
0,2(log2 n) + (log2 n)P

[5]
0,2(log2 n) +O(1),

(45)

where the P·,·’s are all computable, smooth, 1-periodic functions.

Intuitively, that the variance of NPL is larger than that of KPL can be seen from the definition of NPL,
which depends on the random variableNn (see (46)), while on the other hand, KPL depends on n only (in
addition to on the two subtrees). The following figure shows the first few values of the variance of NPL
and that of KPL.

4 6 8 10 12 14 16 18 20

1

2

3

4

5

NPL

KPL

We see that the variance of NPL increases faster than that of KPL.
Note that the periodic functions of the dominant terms are all equal, implying that the correlation

coefficient of Nn and Xn is asymptotically 1.
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On the other hand, the mean value c1,0 of P1,0(t) is given by

c1,0 =
1

log 2

∫ ∞
0

(s+ 1)b−1

Q(−2s)b
ds;

numerical approximations to c1,0 for the first few b are given as follows.

b 1 2 3 4 5 6
c1,0 1 0.57470 0.40698 0.31594 0.25849 0.21885

Note that when b = 1

c1,0 =
1

log 2

∫ ∞
0

ds

Q(−2s)
= 1,

by (28), which is consistent with the fact that Nn ≡ n in this case.
When b = 2, we see that about 42.5% of nodes on average contain two keys and 14% of nodes a single

key. The storage utilization is thus not very bad.
From (44) and these numerical values, we see that, in contrast to the expected KPL, which is asymptotic

to n log2 n for all b, the expected NPL provides a better indication of the “shape variation” of random b-
DSTs.

Our analysis is based on the following straightforward distributional recurrences{
Nn+b

d
= NBn +N∗n−Bn + 1,

Xn+b
d
= XBn +X∗n−Bn +NBn +N∗n−Bn ,

(n ≥ 0), (46)

with the initial conditions N0 = 0, N1 = · · · = Nb−1 = 1 and X0 = · · · = Xb−1 = 0. Here again
Bn ∼ Binomial(n, 1/2), Nn

d
= N∗n, Xn

d
= X∗n and Xn, X

∗
n, Bn as well as Nn, N∗n, Bn are independent.

Generating functions. Define Mn(u, v) = E(eNnu+Xnv). Then (46) translates into the recurrence

Mn+b(u, v) = eu2−n
n∑
j=0

(
n

j

)
Mj(u+ v, v)Mn−j(u+ v, v), (n ≥ 0),

with M0(u, v) = 1,M1(u, v) = · · · = Mb−1(u, v) = eu. Next, let

F (z, u, v) :=
∑
n≥0

Mn(u, v)

n!
zn.

Then the recurrence relation gives

∂b

∂zb
F (z, u, v) = euF

(z
2
, u+ v, v

)2

,

and the Poisson generating function F̃ (z, u, v) := e−zF (z, u, v) satisfies∑
0≤j≤b

(
b

j

)
∂j

∂zj
F̃ (z, u, v) = euF̃

(z
2
, u+ v, v

)2

, (47)
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with the initial conditions F̃ (z, u, v) = 1 + (eu − 1)
∑

1≤j<b(−1)j−1zj/j! + · · · .
For the moments, if we expand F̃ (z, u, v) in terms of u and v,

F̃ (z, u, v) =
∑
m≥0

1

m!

∑
0≤j≤m

(
m

j

)
f̃j,m−j(z)u

jvm−j ,

then f̃j,m−j(z) is the Poisson generating function of E(N j
nX

m−j
n ). Thus all moments of Xn and Nn or

their products can be computed by taking suitable derivatives of (47) with respect to u and v and then
substituting u = v = 0.

Expected number of nodes and expected node-wise path length. By taking first derivatives of (47),
we obtain 

∑
0≤j≤b

(
b

j

)
f̃

(j)
1,0 (z) = 2f̃1,0(z/2) + 1,

∑
0≤j≤b

(
b

j

)
f̃

(j)
0,1 (z) = 2f̃0,1(z/2) + 2f̃1,0(z/2),

(48)

the initial conditions being f̃1,0(0) = 0, f̃ (j)
1,0 (0) = (−1)j−1 for 1 ≤ j < b and f̃ (j)

0,1 (0) = 0 for 0 ≤ j < b.
We can apply the Laplace-Mellin approach as before, starting from the mean of Nn. Note that

L [f̃ (j); s] = sjL [f̃ ; s]−
∑

0≤`<j

s`f̃ (j−1−`)(0) (j = 0, 1, . . . ),

provided that the Laplace transform exists for <(s) > 0. This gives

(s+ 1)bL [f̃1,0; s] = 4L [f̃1,0; 2s] + g̃?1,0(s),

where

g̃?1,0(s) :=
1

s
+

∑
0≤`≤b−2

s`
∑

`≤j≤b−2

(
b

j + 2

)
f̃

(j+1−`)
1,0 (0)

=
1

s
+
∑

1≤j<b

(
b− 1

j

)
sj−1

= s−1(s+ 1)b−1.

Unlike all previous cases, iterating this functional equation leads to a divergent series. Although this
problem can be solved by subtracting a sufficient number of initial terms of f̃1,0(z), the approach we use
does not rely on this and avoids completely such a consideration.

Let L̄ [f̃1,0; s] := L [f̃1,0; s]/Q(−s)b. Then

M [L̄ [f̃1,0; s];ω] =
G1,0(ω)

1− 22−ω , (<(ω) > 2),
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where

G1,0(ω) :=

∫ ∞
0

sω−2

Q(−2s)b
(s+ 1)b−1 ds,

for <(ω) > 1.
From this, we deduce that

f̃1,0(z) = zP1,0(log2 z) +O(1), (49)

uniformly for |z| → ∞ and | arg(z)| ≤ π/2 − ε, where P1,0(t) is a periodic function with the Fourier
series representation

P1,0(t) :=
1

log 2

∑
k∈Z

G1,0(2 + χk)

Γ(2 + χk)
e2kπit,

the series being absolutely convergent. From this we deduce the first approximation of (44).
We now turn to the expected NPL E(Xn). By (48), we have

(s+ 1)bL [f̃0,1; s] = 4L [f̃0,1; 2s] + 4L [f̃1,0; 2s].

Let L̄ [f̃0,1; s] := L [f̃0,1; s]/Q(−s)b. Then

M [f̄0,1;ω] =
22−ωG1,0(ω)

(1− 22−ω)
2 , (<(ω) > 2).

From this we deduce that

f̃0,1(z) = z(log2 z)P
[1]
0,1(log2 z) + zP

[2]
0,1(log2 z) + (log2 z)P

[4]
0,1(log2 z) +O(1), (50)

uniformly for |z| → ∞ and | arg(z)| ≤ π/2 − ε, where P [1]
0,1(t), P

[2]
0,1(t), P

[4]
0,1(t) are smooth, 1-periodic

functions whose Fourier coefficients are given by

P
[1]
0,1(t) = P1,0(t) =

1

log 2

∑
k∈Z

G1,0(2 + χk)

Γ(2 + χk)
e2kπit,

P
[2]
0,1(t) = − 1

(log 2)2

∑
k∈Z

G′1,0(2 + χk)ψ(2 + χk)−G1,0(2 + χk)

Γ(2 + χk)
e2kπit,

P
[4]
0,1(t) =

b

log 2

∑
k∈Z

G1,0(2 + χk)

Γ(1 + χk)
e2kπit.

Here ψ(z) denotes the derivative of log Γ(z) and all series are absolutely convergent. This proves (44).
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Variance. Taking second derivatives in (47) and substituting u = v = 0 gives



∑
0≤j≤b

(
b

j

)
f̃

(j)
2,0 (z) = 2f̃2,0(z/2) + 2f̃1,0(z/2)2 + 4f̃1,0(z/2) + 1,

∑
0≤j≤b

(
b

j

)
f̃

(j)
1,1 (z) = 2f̃1,1(z/2) + 2f̃2,0(z/2) + 2(f̃1,0(z/2) + f̃0,1(z/2))(f̃1,0(z/2) + 1),

∑
0≤j≤b

(
b

j

)
f̃

(j)
0,2 (z) = 2f̃0,2(z/2) + 4f̃1,1(z/2) + 2f̃0,2(z/2) + 2(f̃1,0(z/2) + f̃0,1(z/2))2,

with the initial conditions f̃ (j)
2,0 (0) = (−1)j−1 for 1 ≤ j < b and f̃2,0(0) = f̃

(j)
1,1 (0) = f̃

(j)
0,2 (0) = 0, for

0 ≤ j < b.

The remaining calculations follow the same pattern of proof we used above but become much more
involved. We begin with


Ṽ (z) = f̃2,0(z)− f̃1,0(z)2 − zf̃ ′1,0(z)2,

Ũ(z) = f̃1,1(z)− f̃1,0(z)f̃0,1(z)− zf̃ ′1,0(z)f̃ ′0,1(z),

W̃ (z) = f̃0,2(z)− f̃0,1(z)2 − zf̃ ′0,1(z)2.

Then we deduce



∑
0≤j≤b

(
b

j

)
Ṽ (j)(z) = 2Ṽ (z/2) + g̃2,0(z),

∑
0≤j≤b

(
b

j

)
Ũ (j)(z) = 2Ũ(z/2) + g̃1,1(z),

∑
0≤j≤b

(
b

j

)
W̃ (j)(z) = 2W̃ (z/2) + g̃0,2(z),
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where 

g̃2,0(z) =

 ∑
0≤j≤b

(
b

j

)
f̃

(j)
1,0 (z)

2

+ z

 ∑
0≤j≤b

(
b

j

)
f̃

(j+1)
1,0 (z)

2

−
∑

0≤j≤b

(
b

j

)(
f̃1,0(z)2 + zf̃ ′1,0(z)2

)(j)

,

g̃1,1(z) = 2Ṽ (z/2) +

 ∑
0≤j≤b

(
b

j

)
f̃

(j)
1,0 (z)

 ∑
0≤j≤b

(
b

j

)
f̃

(j)
0,1 (z)


+ z

 ∑
0≤j≤b

(
b

j

)
f̃

(j+1)
1,0 (z)

 ∑
0≤j≤b

(
b

j

)
f̃

(j+1)
0,1 (z)


−
∑

0≤j≤b

(
b

j

)(
f̃1,0(z)f̃0,1(z) + zf̃ ′1,0(z)f̃ ′0,1(z)

)(j)

,

g̃0,2(z) = 4Ũ(z/2) + 2Ṽ (z/2) +

 ∑
0≤j≤b

(
b

j

)
f̃

(j)
0,1 (z)

2

+ z

 ∑
0≤j≤b

(
b

j

)
f̃

(j+1)
0,1 (z)

2

−
∑

0≤j≤b

(
b

j

)(
f̃0,1(z)2 + zf̃ ′0,1(z)2

)(j)

.

The initial conditions are Ṽ (0) = Ũ (j)(0) = W̃ (j)(0) = 0 for 0 ≤ j < b and

Ṽ (j)(0) = (−1)j
(
1 + (j − 2)2j−1

)
, (1 ≤ j ≤ b).

From (49), (50) and Ritt’s theorem (see [54]), we have
g̃2,0(z) = O

(
|z|−1

)
,

g̃1,1(z)− 2Ṽ (z/2) = O
(
|z|−1

)
,

g̃0,2(z)− 4Ũ(z/2)− 2Ṽ (z/2) = O
(
|z|−1

)
,

uniformly for |z| → ∞ and | arg(z)| ≤ π/2 − ε. Let L̄ [Ã; s] := L [Ã; s]/Q(−s)b, where Ã ∈
{Ṽ , Ũ , W̃}. Then we obtain, for <(ω) > 2,

M [L̄ [Ṽ ; s];ω] =
G2,0(ω)

1− 22−ω ,

M [L̄ [Ũ ; s];ω] =
22−ωG2,0(ω)

(1− 22−ω)
2 +

G1,1(ω)

1− 22−ω ,

M [L̄ [W̃ ; s];ω] =
25−2ωG2,0(ω)

(1− 22−ω)
3 +

22−ω (2G1,1(ω) +G2,0(ω))

(1− 22−ω)
2 +

G1,1(ω) +G0,2(ω)

1− 22−ω ,
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where

G2,0(ω) :=

∫ ∞
0

sω−1

Q(−2s)b

(
L [g̃2,0; s] +

(s+ 1)b−1 − (−1)b (2b− 3 + (b− 1)s)

(s+ 2)2

)
ds,

G1,1(ω) :=

∫ ∞
0

sω−1

Q(−2s)b

∫ ∞
0

e−sz
(
g̃1,1(z)− 2Ṽ (z/2)

)
dz ds,

G0,2(ω) :=

∫ ∞
0

sω−1

Q(−2s)b

∫ ∞
0

e−sz
(
g̃0,2(z)− 2Ṽ (z/2)− 4Ũ(z/2)

)
dz ds,

with all functions analytic for <(ω) > 0. Consequently, we deduce (45).

4 Digital search trees. II. More shape parameters.
We consider in this section four additional examples on DSTs whose variances are essentially linear.
The same tools we use readily apply to b-DSTs, but we focus on DSTs because the results are easier to
state and the asymptotic behaviors do not differ in essence with those for the more general b-DSTs the
corresponding expressions of which are however much messier.

The first parameter we consider is the so-calledw-parameter (see [16]), which is the sum of the subtree-
size of the parent-node of each leaf (over all leaves)(iii). Instead of w-parameter, we call it the total
peripheral path-length (PPL), since it measures to some extent the fringe ampleness of the trees. Also
this is in consistency with the two previous notions of path-length we distinguished.

Then we consider the number of leaves, which has previously been studied in details in [26, 31, 39] and
which is well connected to PPL. Our expression for the variance simplifies known ones.

Yet another notion of path-length we consider here is the so-called Colless index in phylogenetics,
which is the sum of the absolute difference of the two subtree-sizes of each node (over all nodes). We call
this index the total differential path-length (DPL) as it clearly indicates the balance or symmetry of the
tree. Another widely used measure of imbalance in phylogenetics is the Sackin index, which is nothing
but the external path-length.

The last example we consider is the weighted path-length (WPL), which often arises in coding, opti-
mization and many related problems.

The orders of the means and the variances exhibited by all the shape parameters we study in this paper
are listed in Table 1.

4.1 Peripheral path-length (PPL)
The PPL (or w-parameter) was introduced in [16], the motivations arising from the analysis of compres-
sion algorithms. We start from the fringe-size of a leaf node λ, which is defined to be the size of the
subtree rooted at its parent-node; see Figure 9. The PPL of a tree is then defined to be the sum of the
fringe-sizes of all leaf-nodes. Let Xn denote the PPL in a DST built from n random binary strings under
our usual independent Bernoulli model.

Drmota et al. showed in [16] that

E(Xn) = n (Cw +$w(log2 n)) + o(n), (51)

(iii) The leaves or leaf-nodes of a tree are nodes without any descendants.



146 Hsien-Kuei Hwang, Michael Fuchs and Vytas Zacharovas

T

...

T

...

Fig. 9: The two possible configurations of the fringe of a leaf: the fringe-size (or w-parameter) equals |T |+ 2. Note
that T may be empty.

where

Cw :=
∑
`≥0

(`+ 1)(`− 2)

Q`2`

∑
k≥1

1

2`+k − 1
− 1

+
1

log 2

∑
`≥0

2`− 1

Q`2`
.

Note that by (24), we have the identities

∑
`≥0

(`+ 1)(`− 2)

Q`2`
=

1

Q∞

∑
j≥1

1

(2j − 1)2
+

∑
j≥1

1

2j + 1

2

− 2

 ,

∑
`≥0

2`− 1

Q`2`
=

1

Q∞

∑
j≥1

2

2j − 1
− 1

 .

The asymptotic behavior (51) is to be compared with the n log n-order exhibited by most other log-trees
such as binary search trees and recursive trees; see [16]. It reflects that most fringes of random DSTs are
small in size; see Figure 3. Indeed, since the expected number of leaves is also asymptotic to n times a
periodic function, the result (51) implies that the average size of a fringe in random DSTs is bounded. We
show that the standard deviation is also small.

Define

g̃2(z) := zf̃ ′′1 (z)2 − z

16
e−z

(
z4 + 4z3 + 16z2 − 8z + 64

)
− z

4
e−z/2

(
4(z + 4)f̃1(z/2)− 2(z2 + 2z + 8)f̃ ′1(z/2)− (z + 2)(z + 8)

)
,

(52)

where f̃1(z) represents as usual the Poisson generating function of E(Xn). Let G2(ω) denote the Mellin
transform of L [g̃2; s]/Q(−2s).

Theorem 4.1 The mean and the variance of the total PPL Xn of random DSTs of n strings satisfy

E(Xn) = n (Cw +$w(log2 n)) +O(1),

V(Xn) = nPw(log2 n) +O(1), (53)

where Pw(t) is a smooth, 1-periodic function with the Fourier series expansion

Pw(t) =
1

log 2

∑
k∈Z

G2(2 + χk)

Γ(2 + χk)
e2kπit,
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the series being absolutely convergent.

We provide only the major steps of the proof since it follows the same approach we developed above.

Recurrence and generating functions. By definition and by conditioning on the size of one of the
subtrees of the root, we have the following different configurations

n − 1 n − 1 n − 2 n − 2 k n − 1 − k

from which we derive the recurrence for the PPL

Xn
d
=


Xn−1, with probability 22−n;

n+Xn−2, with probability (n− 1)22−n;

Xk +X∗n−1−k, with probability 21−n(n−1
k

)
, 2 ≤ k ≤ n− 3,

where X0 = X1 = 0, X2 = 2 and X3 has the distribution

X3 =

{
6, with probability 1/2;

2, with probability 1/2.

From this recurrence, it follows that the bivariate Poisson generating function

F̃ (z, y) := e−z
∑
n≥0

E(eXny)

n!
zn

satisfies the nonlinear equation

F̃ (z, y) +
∂

∂z
F̃ (z, y) = F̃

(z
2
, y
)2

+ ze2y+eyz/2−zF̃

(
eyz

2
, y

)
− ze−z/2F̃

(z
2
, y
)

+
z2

4
e−z

(
e3y − 1

)2
,

(54)

with the initial condition F̃ (0, y) = 1.

The expected PPL. By (54), we obtain the differential-functional equation for f̃1(z) by taking deriva-
tive with respect to y and then substituting y = 1, giving

f̃1(z) + f̃ ′1(z) = 2f̃1(z/2) + z(2 + z/2)e−z/2, (55)

with f1(0) = 0. The Laplace transform of f̃1 satisfies

L [f̃1; s] =
4

s+ 1
L [f̃1; s] +

16

(1 + 2s)3

= 16
∑
k≥0

4k

(s+ 1) · · · (2k−1s+ 1)(2k+1s+ 1)3
.
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Then a straightforward application of the Laplace-Mellin-de-Poissonization approach yields

E(Xn) =
n

log 2

∑
k∈Z

G1(2 + χk)

Γ(2 + χk)
nχk +O(1),

where

G1(ω) := 16

∫ ∞
0

sω−1

Q(−s)(2s+ 1)3
ds (<(ω) > 0).

The O(1)-term can be further refined by the same analysis. In particular, we get an alternative expression
for Cw

Cw =
G1(2)

log 2
=

16

log 2

∫ ∞
0

s

Q(−s)(2s+ 1)3
ds ≈ 1.10302 66959 · · · .

That the two expressions of Cw are identical can be proved by standard calculus of residues; see [24] for
similar details.

The variance of the PPL. Again from (54), we derive the equation for the Poisson generating function
f̃2(z) of the second moment of Xn

f̃2(z) + f̃ ′2(z) = 2f̃2(z/2) + 2f̃1(z/2)2 +
9

2
z2e−z

+ ze−z/2
(

(z + 4)f̃1(z/2) + zf̃ ′1(z/2) +
z2 + 10z + 16

4

)
,

(56)

with f̃2(0) = 0.
Let Ṽ (z) = f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2. Then, by (55), (56) and Lemma 2.7,

Ṽ (z) + Ṽ ′(z) = 2Ṽ (z/2) + g̃2(z),

with Ṽ (0) = 0, where g̃2 is defined in (52).
Applying again the Laplace-Mellin-de-Poissonization approach, we deduce (53). In particular, the

mean value of the periodic function Pw is given by

G2(2)

log 2
=

1

log 2

∫ ∞
0

s

Q(−2s)

∫ ∞
0

e−zsg̃2(z) dz ds.

4.2 The number of leaves
The leaves of a tree are the locations where the nodes holding new-coming keys will be connected; thus
different types of data fields can be used to save memory, notably for b-DSTs. The number of leaves then
provides a quick and simpler look at the “fringes” of a tree. Such nodes are sometimes referred to as the
external-internal nodes or internal endnodes in the literature; see [16, 26, 41, 56].

Let Xn denote the number of leaves in a random DST of n keys. Then Xn satisfies the recurrence

Xn+1
d
= XBn +X∗n−Bn (n ≥ 1), (57)

with X0 = 0 and X1 = 1, where Bn ∼ Binomial(n; 1/2).
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Flajolet and Sedgewick [26], solving an open question raised by Knuth, showed that

E(Xn) = n (Cfs +$fs(log2 n)) +O(n1/2),

where $fs(t) is a smooth, 1-periodic function and

Cfs = 1 +
∑
k≥1

k

Qk2k

∑
1≤j≤k

1

2j − 1
− 1

Q∞

 1

log 2
+

∑
k≥1

1

2k − 1

2

−
∑
k≥1

1

2k − 1


≈ 0.37204 86812 · · · .

A finer approximation, together with the alternative (and numerically better) expression

Cfs = 1 +
∑
k≥1

1

2k − 1
− 1

Q∞

 1

log 2
+
∑
k≥1

(−1)kk

Qk(2k − 1)2k(k+1)/2

 ,

was derived by Kirschenhofer and Prodinger [39]; see also [56]. They proved additionally the asymptotic
linearity of the variance

V(Xn) ∼ n (Ckp +$kp(log2 n)) ,

where $kp is a smooth, 1-periodic function with mean zero and a long, complicated expression is given
for the leading constant Ckp. We derive different forms for these two asymptotic approximations.

Define

g̃2(z) = zf̃ ′′1 (z)2 + e−z
(

1− e−z(1 + z) + 2zf̃ ′1(z/2)− 4f̃1(z/2)
)
, (58)

where f̃1(z) := e−z
∑
n≥0 E(Xn)zn/n!.

Theorem 4.2 The mean and the variance of the number of leaves are both asymptotically linear with the
approximations

E(Xn) =
n

log 2

∑
k∈Z

G1(2 + χk)

Γ(1 + χk)
nχk +O(1),

V(Xn) =
n

log 2

∑
k∈Z

G2(2 + χk)

Γ(2 + χk)
nχk +O(1),

where the two series are absolutely convergent with G1, G2 defined by

G1(ω) =

∫ ∞
0

sω−1

(s+ 1)Q(−2s)
ds,

G2(ω) =

∫ ∞
0

sω−1

Q(−2s)

∫ ∞
0

e−zsg̃2(z) dz ds,

for <(ω) > 0.
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We see in particular that

Cfs =
1

log 2

∫ ∞
0

s

(s+ 1)Q(−2s)
ds,

Ckp =
1

log 2

∫ ∞
0

s

Q(−2s)

∫ ∞
0

e−zsg̃2(z) dz ds. (59)

Sketch of proof. From (57), we derive the equation for the bivariate generating function F̃ (z, y) :=
e−z

∑
n≥0 E(eXny)zn/n!

F̃ (z, y) +
∂

∂z
F̃ (z, y) = F̃

(z
2
, y
)2

+ (ey − 1) e−z,

with F̃ (0, y) = 1. Then the Poisson generating functions of the first two moments satisfy

f̃1(z) + f̃ ′1(z) = 2f̃1(z/2) + e−z, (60)

f̃2(z) + f̃ ′2(z) = 2f̃2(z/2) + 2f̃1(z/2)2 + e−z,

with f̃1(0) = f̃2(0). Consequently, the function Ṽ (z) := f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2 satisfies

Ṽ (z) + Ṽ ′(z) = 2Ṽ (z/2) + g̃2(z),

with Ṽ (0) = 0, where g̃2 is given in (58). The remaining analysis follows the same pattern as above and
is omitted.

We provide instead some details for the numerical evaluation of the constant Ckp as defined in (59),
which is similar to the case of internal path-length of DSTs.

By applying the Laplace transform to both sides of (60) and by iteration, we get

L [f̃1; s] =
∑
k≥0

4k

(s+ 1)(2s+ 1) · · · (2k−1s+ 1)(2ks+ 1)2
.

Since the inverse Laplace transform derived from the partial fraction expansion of this series is divergent,
we consider the function f̂1(z) := f̃1(z)− z + z2/2 for which the equation (60) becomes

f̂1(z) + f̂ ′1(z) = 2f̂1(z/2)− 1 + z +
z2

4
+ e−z,

with f̂1(0) = 0, and we have

L [f̂1; s] =
1

2s3

∑
k≥0

3 · 2ks+ 1

2k(s+ 1) · · · (2k−1s+ 1)(2ks+ 1)2
.

Then by the partial fraction expansion

3 · 2ks+ 1

(s+ 1) · · · (2k−1s+ 1)(2ks+ 1)2
=
∑

0≤`<k

(−1)k−`(3 · 2k−` − 1)2−(k−`+1
2 )

(2k−` − 1)Q`Qk−`
· 1

2`s+ 1

+
1

Qk

3 + 2
∑

1≤j≤k

1

2j − 1

 1

2ks+ 1
− 2

Qk(2ks+ 1)2
,
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we obtain

L [f̂1; s] =
1

2s3

∑
`≥0

1

2`Q`

(
δ`

2`s+ 1
− 2

(2`s+ 1)2

)
,

where

δ` = 3 + 2
∑

1≤j≤`

1

2j − 1
+
∑
j≥1

(−1)j(3 · 2j − 1)2−(j+1
2 )

(2j − 1)2jQj
.

Obviously, lim`→∞ δ` = 4. Now, by the inverse Laplace transform,

f̂1(z) =
1

2

∑
`≥0

1

Q`

(
2`δ`

(
1− z

2`
+

z2

22`+1
− e−z/2

`

)

− 2`+1

(
3− z

2`−1
+

z2

22`+1
− 3e−z/2

`

)
+ 2ze−z/2

`

)
,

which converges for all z; also from [26] we have

f̂1(z) =
∑
n≥3

(−1)n−1zn

n!
Q(n− 2)

∑
0≤j≤n−2

1

Q(j)
.

Then the first and the second derivatives are given by

f̂ ′1(z) =
1

2

∑
`≥0

1

Q`

(
δ`

(
−1 + z/2` + e−z/2

`
)

+ 4− z

2`−1
− 4e−z/2

`

− z

2`−1
e−z/2

`
)
,

f̂ ′′1 (z) =
1

2

∑
`≥0

1

2`Q`

(
δ`

(
1− e−z/2

`
)
− 2 + 2e−z/2

`

+
z

2`−1
e−z/2

`
)
.

Now the constant Ckp can be expressed in terms of the integrals of f̂1 as follows.

(log 2)Ckp =

∫ ∞
0

s

Q(−2s)(s+ 1)(s+ 2)2
ds+

∫ ∞
0

s

Q(−2s)

∫ ∞
0

e−zsz(f̂ ′′1 (z)− 1)2 dz ds

+ 2

∫ ∞
0

s

Q(−2s)

∫ ∞
0

e−z(s+1)

(
z − 1

s+ 1

)
(f̂ ′1(z/2)− z) dz ds.

And we get Ckp ≈ 0.034203 · · · .

A general weighted sum of node-types for b-DSTs. For b ≥ 2, we can consider X [j]
n , 1 ≤ j ≤ b, the

number of leaves containing j records in a random b-DST with bucket capacity b built from n records.
Let also X [b+1]

n be the number of internal (non-leaf) nodes. Define

Xn =
∑

1≤j≤b+1

ajX
[j]
n ,
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where a1, . . . , ab+1 are arbitrary real numbers. By a straightforward computation∑
0≤j≤b

(
b

j

)
∂j

∂zj
F̃ (z, y) = eab+1yF̃

(z
2
, y
)2

+ e−z (eaby − eab+1y) ,

with F̃ (0, y) = 1. Then our approach can be applied and leads to the same type of results as Theorem 4.2
with different G1 and G2; the resulting expressions for the variance are more explicit and simpler than
those given in [31].

4.3 Colless index: the differential path-length (DPL)
The DPL of a tree is defined to be the sum over all nodes of the absolute difference of the two subtree-sizes
of each node as depicted below.

Tleft Tright

DPL =
∑

all nodes
|Tleft − Tright|

Properties of such a path length in random binary search trees have long been investigated in the sys-
tematic biology literature; see [4] and the references therein.

Let Xn denote the DPL of a random DST of n input-strings. Then by definition and by our indepen-
dence assumption, we have the recurrence for the moment generating function

Mn+1(y) = 2−n
∑

0≤j≤n

(
n

j

)
Mj(y)Mn−j(y)e|n−2j|y (n ≥ 0), (61)

with M0(y) = 1.
Let also

g̃2(z) := zf̃ ′′1 (z)2 + z − h̃1(z)2 − zh̃′1(z)2 − 4h̃1(z)f̃(z/2)− 2zh̃′1(z)f̃ ′1(z/2) + 4h̃c(z),

where f̃1(z) is the Poisson generating function of E(Xn) and h̃c(z) is defined by

h̃c(z) := e−z
∑
n≥0

(z/2)n

n!

∑
0≤k≤n

(
n

k

)
E(Xk)|n− 2k|. (62)

Theorem 4.3 The mean and the variance of the DPL of random DSTs satisfy the asymptotic relations

E(Xn) = nPd,µ(log2 n)−
√

2n
√
π(
√

2− 1)
+O(1), (63)

V(Xn) =

(
1− 2

π

)
n log2 n+ nPd,σ(log2 n) +O(n1/2), (64)

where Pd,µ and Pd,σ are explicitly computable, smooth, 1-periodic functions.

These results are to be compared with the known results for random binary search trees for which the DPL
has mean of order n log n and variance of order n2; see [4].
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Expected DPL. The approach we follow here for deriving the differential-functional equations sat-
isfied by the Poisson generating functions of the first two moments is slightly different from the one
we used since the corresponding nonlinear equation for the bivariate generating function F (z, y) :=∑
n≥0Mn(y)zn/n! is very involved as given below.

∂

∂z
F (z, y)− 1 = F

(
eyz

2
, y

)
F

(
e−yz

2
, y

)
+

1

2πi

∮
|w|=r>0

F
(wz

2
, y
)(F (eyz/2, y)− w−1e−yF (z/(2w), y)

w − e−y

−F (e−yz/2, y)− w−1eyF (z/(2w), y)

w − ey

)
dw,

with F (0, y) = 1.
We use instead a more elementary argument. From the recurrence (61), we obtain, with µn := E(Xn),

µn+1 = 21−n
∑

0≤k≤n

(
n

k

)
µk + 2−n

∑
0≤k≤n

(
n

k

)
|n− 2k| (n ≥ 1),

the initial condition being µ0 = 0. Then the Poisson generating function of Xn satisfies the equation

f̃1(z) + f̃ ′1(z) = 2f̃1(z/2) + h̃1(z),

with f̃1(0) = 0, where h̃1 is given by

h̃1(z) = e−z
∑
n≥0

(z/2)n

n!

∑
0≤k≤n

(
n

k

)
|n− 2k|

= ze−z (I0(z) + I1(z)) ,

where we used the identity∑
0≤k≤n

(
n

k

)
|n− 2k| = 2n!

bn/2c!(dn/2e − 1)!
(n ≥ 1),

and Iα(z) denotes the modified Bessel functions

Iα(z) :=
∑
n≥0

(z/2)2n+α

n!Γ(n+ α+ 1)
.

It is known (see [63]) that, as |z| → ∞,

Iα(z) =


ez√
2πz

(
1 +O(|z|−1)

)
, if | arg(z)| ≤ π/2− ε,

O
(
|z|−1/2

(
e<(z) + e−<(z)

))
, if | arg(z)| ≤ π,

, (65)
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the O-term holding uniformly in z in each case. Thus, by (65), h̃1 ∈JS and

h̃1(z) =

√
2z

π

(
1 +O(|z|−1)

)
,

for |z| → ∞ in | arg(z)| ≤ π/2− ε. Also

L [h̃1; s] = (s+ 2)−1/2s−3/2 (<(s) > 0).

Thus we can apply the same approach and deduce that

E(Xn) =
n

log 2

∑
k∈Z

G1(2 + χk)

Γ(2 + χk)
nχk −

√
2n√

2π(
√

2− 1)
+O(1),

where G1(ω) is the Mellin transform of L [h̃1; s]/Q(−2s)

G1(ω) =

∫ ∞
0

sω−5/2

Q(−2s)
√
s+ 2

ds (<(ω) > 3/2).

This proves (63). Numerically, the mean value of the dominant periodic function is G1(2)/ log 2 ≈
1.33907 46494.

The variance of DPL. Again from (61), we have the recurrence for the second moment sn := E(X2
n)

sn+1 = 2−n
∑

0≤k≤n

(
n

k

)(
sk + sn−k + (n− 2k)2 + 2µkµn−k + 4µk|n− 2k|

)
,

for n ≥ 1 with s0 = s1 = 0. Since

2−n
∑

0≤k≤n

(
n

k

)
(n− 2k)2 = n, (66)

we see that the Poisson generating function of sn satisfies the nonlinear equation

f̃2(z) + f̃ ′2(z) = 2f̃2(z/2) + 2f̃1(z/2)2 + z + 4h̃c(z),

with f̃2(0) = 0, where h̃c(z) is defined in (62).

Lemma 4.4 The function h̃c is JS-admissible and satisfies

h̃c(z) = h̃1(z)f̃1(z/2) +O(|z|1/2), (67)

in the sector | arg(z)| ≤ π/2− ε.
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Proof: Observe first that

h1(z) =
∑
k≥0

1

k!

(z
2

)k∑
n≥0

|n− k|
n!

(z
2

)n
= 2

∑
k≥0

1

k!

(z
2

)k ∑
0≤j≤k

k − j
j!

(z
2

)j
=

2

2πi

∮
|w|=r

ez(w+1/w)/2

(w − 1)2
dw (r < 1),

since ∑
0≤j≤k

k − j
j!

(z
2

)j
= [wk]

wezw/2

(w − 1)2
.

On the other hand, since f1(z) =
∑
n≥0 µnz

n/n!, we have, by the same argument,

hc(z) := ezh̃c(z)

=
∑
k≥0

µk
k!

(z
2

)k∑
n≥0

|n− k|
n!

(z
2

)n

=
∑
k≥0

µk
k!

(z
2

)k ∑
0≤n≤k

k − n
n!

(z
2

)n
+
∑
n≥k

n− k
n!

(z
2

)n
=
∑
k≥0

µk
k!

(z
2

)k ∑
0≤n≤k

k − n
n!

(z
2

)n
+
∑
n≥0

1

n!

(z
2

)n ∑
0≤k≤n

(n− k)
µk
k!

(z
2

)k
=

1

2πi

∮
|w|=r<1

f1

( z

2w

) ewz/2

(w − 1)2
dw +

1

2πi

∮
|w|=r<1

f1

(wz
2

) ez/(2w)

(w − 1)2
dw.

To prove condition (O), we start with changes of variables, giving

hc(z) =
z

2πi
◦
∮
|w|=|z|

f1

(w
2

) ez
2/(2w)

(w − z)2
dw +

z

2πi
◦
∮
|w|=|z|

f1

(w
2

) ez
2/(2w)

(w − z)2
dw,

where the first integration circle is indented to the right to avoid the polar singularity w = z, and the
second to the left. By splitting each integration contour into two parts, we obtain

hc(z) =
z

2πi

(
⊃
∫

+ ⊂
∫ )

f1

(w
2

) ez
2/(2w)

(w − z)2
dw +O

(
ε−2

∫
ε≤|θ|≤π

∣∣∣∣f1

(
|z|eiθ

2

)∣∣∣∣ e|z|(cos θ)/2 dθ

)
,

where the integration contour ⊃
∫

is any path connecting the two endpoints |z|e±iε and indented to the
right, and ⊂

∫
denotes the corresponding symmetric contour with respect to w = z (and indented to the

left). Since f̃1 ∈JS , condition (O) for h̃c(z) is readily checked.
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For condition (I), it suffices to prove (67). For that purpose, we use the representation

h̃c(z) =
e−z

2πi

∮
|w|=r<1

ez(w+1/w)/2

(w − 1)2

(
f̃1

( z

2w

)
+ f̃1

(wz
2

))
dw

= f̃1

(z
2

) e−z
2πi

∮
|w|=r<1

ez(w+1/w)/2

(w − 1)2
dw +

e−z

2πi

∮
|w|=r<1

ez(w+1/w)/2Rz(w) dw

= f̃1(z/2)h̃1(z) +
e−z

2πi

∮
|w|=1

ez(w+1/w)/2Rz(w) dw,

where

Rz(w) :=
1

(w − z)2

{(
f̃1

( z

2w

)
− f̃1

(z
2

)
− f̃ ′1

(z
2

) z(w − 1)

2

)

+

(
f̃1

(wz
2

)
− f̃1

(z
2

)
+ f̃ ′1

(z
2

) z(w − 1)

2

)}

is analytic at w = z. The error term of h̃c(z) − h̃1(z)f̃1(z/2) can be estimated by a similar argument as
that used for checking condition (O). This completes the proof of the Lemma. 2

The remaining analysis is now routine. Let Ṽ (z) := f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2. Then

Ṽ (z) + Ṽ ′(z) = 2Ṽ (z/2) + g̃2(z),

where, by Lemma 2.7,

g̃2(z) = z − h̃1(z)2 + 4
(
h̃c(z)− h̃1(z)f̃1(z/2)

)
− zh̃′1(z)2 − 2zh̃′1(z)f̃ ′1(z/2) + zf̃ ′′1 (z)2

=

(
1− 2

π

)
z +O(|z|1/2),

for | arg(z)| ≤ π/2− ε. From this and the analytic properties of the functions involved, we deduce (64).

Remark. The same approach can be extended to more general differential path-length of the form∑
all nodes |Tleft − Tright|m with m ≥ 2. Interestingly, when m = 2, the mean is identical to the total

internal path-length in view of (66) and the variance is asymptotic to 4n2. For m > 2, the mean and the
variance are asymptotic to

2m/2Γ((m+ 1)/2)√
π(1− 21−m)

nm/2,
2m(Γ(m+ 1/2)− π−1/2Γ((m+ 1)/2)2)√

π(1− 21−m)
nm,

respectively.
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4.4 A weighted path-length (WPL)
Weighted path-lengths of the form Wn :=

∑
1≤j≤n wj`j appear often in applications, where `j denotes

the distance of the j-th node (arranged in an appropriate manner, say first level-wise and then left-to-right
or in their incoming order) to the root and wj the weight attached to the j-th node. The calculation of Wn

in the case of random DSTs can be carried out recursively by

Wn+1
d
= WBn +W ∗n−Bn +

∑
2≤j≤n+1

wj ,

assuming that the root is labelled 1. We consider in this section the case when wj = (log j)m, m ≥ 1.
From a technical point of view, it suffices to consider the random variables

Xn+1
d
= XBn +X∗n−Bn + (n+ 1)(log(n+ 1))m (n ≥ 0),

with X0 = 0, since the partial sum
∑

2≤j≤n(log j)m is nothing but∑
2≤j≤n

(log j)m = [zn]
L0,m(z)

1− z
,

where
La,m(z) :=

∑
k≥1

n−a(log k)mzm (a 6= 1, 2, . . . ),

on whose analytic properties our analytic approach heavily relies.
The random variables Xn represent the sole example on DSTs we discuss in this paper with non-

integral values; they also exhibit an interesting phenomenon in that the mean is of order n(log n)m+1 but
the variance is asymptotic to n times a periodic function, in contrast to the orders of DPL.

Theorem 4.5 The mean and the variance of the weighted path-length Xn are asymptotic to

E(Xn) =
n(log n)m+1

(m+ 1) log 2
+ n

∑
1≤j≤m

cm,j(log n)j + nPw,µ(log2 n) +O
(
(log n)m+1

)
,

V(Xn) = nPw,σ(log2 n) +O
(
(log n)2m+2

)
,

respectively, where the cm,j’s are constants depending on m, and Pw,µ and Pw,σ are 1-periodic, smooth
functions.

That the variance is linear is well-predicted by the deep theorem of Schachinger derived in [58] since the
second difference of the sequence n(log n)m is o(n−1/2−ε). Our approach has the advantage of providing
more precise approximations.

The new ingredient we need is incorporated in the following lemma.

Lemma 4.6 ([21]) The function La,m(z) can analytically be continued into the cut-plane C\ [1,∞) with
a sole singularity at z = 1 near which it admits the asymptotic approximation

La,m(e−s) = Γ(1− a)sa−1(− log s)m +O(1),

the O-term holding uniformly for | arg(s)| ≤ π − ε.
Indeed, the tools developed in [21] can also be easily extended to similar “toll-functions” such as nHm

n .
Details are left for the interested readers.
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5 Conclusions and extensions
We showed in this paper, through many shape parameters on random DSTs that the crucial use of the
normalization Ṽ (z) := f̃2(z)− f̃1(z)2 − zf̃ ′(z)2 at the level of Poisson generating function is extremely
helpful in simplifying the asymptotic analysis of the variance as well as the resulting expressions. The
same idea can be applied to a large number of concrete problems with a binomial splitting procedure.
These and some related topics and extensions will be pursued elsewhere. We briefly mention in this final
section some extensions and related properties.

Central limit theorems. All shape parameters we considered in this paper are asymptotically normally
distributed in the sense of convergence in distribution. We describe the results in this section and merely
indicate the methods of proofs. The only case that requires a separate study is NPL of random b-DSTs
with b ≥ 2 (a bivariate consideration of the limit laws is needed), details being given in a future paper.

Theorem 5.1 The internal path-length, the peripheral path-length, the number of leaves, the differential
path-length, the weighted path-length of random DSTs, and the key-wise path-length of random b-DSTs
with b ≥ 2 are all asymptotically normally distributed

Xn − E(Xn)√
V(Xn)

d−→ N (0, 1),

whereXn denotes any of these shape parameters, d−→ stands for convergence in distribution, and N (0, 1)
is a standard normal distribution with zero mean and unit variance.

See Figure 10 for a plot of the histograms of DPL.
The method of moments applies to all these cases and establishes the central limit theorems; similar

details are given as in [31] (the asymptotic normality of the number of leaves being already proved there
as a special case).

In a parallel way, contraction method also works well for all these shape parameters; see [51, 52, 53].
On the other hand, Schachinger’s asymptotic normality results cover the IPL, PPL, number of leaves

and WPL, but not PPL and KPL on b-DSTs, although his approach may be modified for that purpose.
Finally, the complex-analytic approach used in [35] for internal path-length may be extended to prove

some of these cases, but the proofs are messy, although the results established are often stronger (for
example, with convergence rate).

The depth. The asymptotic analysis we used in this paper can also be extended to the depth (the distance
between a randomly chosen internal node and the root) although it is of logarithmic order. Let Xn denote
the depth of a random DST of n nodes. The starting point is to consider the expected profile polynomial

Pn(y) :=
∑

0≤k<n

nP(Xn = k)yk,
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Fig. 10: The histograms of DPL for n = 20, 30, 40 and 50, normalized by their standard deviations.

where nP(Xn = k) is nothing but the expected number of internal nodes at distance k to the root. Then
we have the recurrence

Pn+1(y) = 1 + y2−n
∑

0≤k≤n

(
n

k

)
(Pk(y) + Pn−k(y)) (n ≥ 0),

with P0(y) = 0. From this relation, we obtain the equation for the Poisson generating function F̃ (z, y) of
Pn(y)

F̃ (z, y) +
∂

∂z
F̃ (z, y) = 2yF̃

(z
2
, y
)

+ 1,

with F̃ (0, y) = 0. It follows, by taking coefficients of zn on both sides and by solving the resulting
recurrence, that

Pn(y) =
∑

1≤k≤n

(
n

k

)
(−1)k−1

∏
0≤j≤k−2

(
1− y

2j

)
(n ≥ 1);

see [44, p. 504] for a different proof. Asymptotic approximation to Pn(y) can then be obtained by Rice’s
integral formula

Pn(y) = n− y − 1

2πi

∫
(3/2)

Γ(n+ 1)Γ(−s)Q(y)

Γ(n+ 1− s)(1− 21−sy)Q(21−sy)
ds,

for |y − 1| ≤ ε. More precisely, if t ∈ C lies in a small neighborhood of the origin, then

E(eXnt) =
Pn(et)

n

=
(et − 1)Q(et)

Q(1) log 2

∑
k∈Z

Γ

(
−1− t

log 2
− χk

)
nt/ log2 +χk

(
1 +O

(
n−1

))
+O(n−1), (68)
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uniformly for |t| ≤ ε. Alternatively, one can also apply the Laplace-Mellin-de-Poissonization approach
and obtain the same type of result for not only DSTs but also for more general b-DSTs. See [48, 49] for a
more general and detailed treatment (by a different approach).

The estimate (68) leads to effective asymptotic estimates for all moments of Xn − log2 n by standard
arguments; see [32]. In particular, we obtain

E(Xn) = log2 n+
γ − 1

log 2
+

1

2
−
∑
k≥1

1

2k − 1
+$1(log2 n) +O

(
n−1 log n

)
,

V(Xn) =
1

12
+

1

(log 2)2

(
1 +

π2

6

)
−
∑
k≥1

2k

(2k − 1)2
+$5(log2 n) +O

(
n−1 log2 n

)
,

where the estimate for the mean is exactly (7) with $1 given in (8) and $5 is a smooth periodic function.

An analytic extension. From a purely analytic viewpoint, the underlying differential-functional equa-
tion (13) for the moments can be extended to an equation of the form∑

0≤j≤b

(
b

j

)
f̃ (j)(z) = αf̃

(
z

β

)
+ g̃(z) (α > 0;β > 1),

for which our approach still applies, leading to the functional equation for the Laplace transform

(s+ 1)bL [f̃ ; s] = αβL [f̃ ;βs] + L [g̃; s].

The natural normalizing function is then provided by

Qβ(−s) :=
∏
j≥1

(
1 +

s

βj

)b
,

and the corresponding Laplace-Mellin asymptotic analysis is similar.
In particular, the case when α = β = m corresponds to a straightforward extension of binary DSTs

to m-ary DSTS (and the binary unbiased Bernoulli random variable to the uniform distribution over
{0, 1, . . . ,m − 1}). The stochastic behaviors of all shape parameters on such trees follow the same
patterns as showed in this paper.

Yet another concrete instance arises in the so-called Eden model studied by Dean and Majumdar [10],
which corresponds to α = m and β > 1. The model is constructed in the following way. We start at time
t = 0 at which we have an empty node. Then at time t = T , where T ∼ Exponential(1), we fill the empty
node and attach to it m different empty nodes. The process then continues independently for each empty
node by the following recursive rule. Once an empty node of depth j is attached to a tree at time t = t′, it
is then filled at time point t′ + T , where T ∼ E(βj), and m new empty nodes are attached to it.

The mean and the variance of the number of filled nodes at a large time of such trees are studied in
details in [10]. Since the model is continuous, there is no need to de-Poissonize to derive the asymptotics
of the coefficient; as a consequence, no correction term as we used in this paper is required for the
asymptotics of the variance.
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Other DST-type recurrences. While the technique of Poissonized variance with correction remains
useful for the natural case when the Bernoulli random variable is no longer symmetric, the Laplace-Mellin
approach does not apply directly. Other asymptotic ingredients are needed such as a direct manipulation
of the Mellin transforms; see [49] and the references therein.

DST-type structures and recurrences also arise in other statistical physical models such as the diffusion-
limited aggregation; see [1, 5].
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Appendix. An Elementary Approach to the Asymptotic Linearity of
the Variance.
We describe briefly here a direct elementary approach to the variance of random variables satisfying the
recurrence

Xn+1
d
= XBn +X∗n−Bn + Tn,

where

πn,k := P(Bn = k) =

(
n

k

)
2−n (0 ≤ k ≤ n).

The starting point is to consider the recurrence satisfied by the variance vn := V(Xn)

vn+1 =
∑

0≤k≤n

πn,k (vk + vn−k) + un + V(Tn),

where µk := E(Xn) and

un :=
∑

0≤k≤n

πn,k (µk + µn−k − µn+1 + E(Tn))
2
.

In most cases, we have the estimate µk = f̃1(k)+O(kε). This, together with the Gaussian approximation
of the binomial distribution, implies that

un ≈
∑

|k−n/2|=o(n2/3)
k=n/2+x

√
n/2

πn,k

(
f̃1

(n
2

+
x

2

√
n
)

+ f̃1

(n
2
− x

2

√
n
)
− f̃1(n+ 1) + E(Tn)

)2

≈
∑

|k−n/2|=o(n2/3)
k=n/2+x

√
n/2

πn,k

(
2f̃1

(n
2

)
− f̃1(n)− f̃ ′1(n) + E(Tn)

)2

≈
(

2f̃1

(n
2

)
− f̃1(n)− f̃ ′1(n) + E(Tn)

)2

.

But then (see (13) below)

2f̃1

(n
2

)
− f̃1(n)− f̃ ′1(n) + E(Tn) = E(Tn)− h̃1(n),

where

h̃1(z) := e−z
∑
j≥0

E(Tj)

j!
zj .

The order of the difference E(Tn) − h̃1(n) ≈ n|h̃′′1(n)| are expected to be small, roughly O(nε) in all
cases we consider here. Consequently, the variance is asymptotically linear; see [31, 58] for more precise
details.

We see clearly that the smallness of the variance results naturally from the high concentration of the
binomial distribution near its mean.
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