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Analytic Combinatorics (i)

Combinatorialists use recurrence, generating functions, and
such transformations as the Vandermonde convolution; oth-
ers, to my horror, use contour integrals, differential equa-
tions, and other resources of mathematical analysis.

- John Riordan (1968).

Michael Fuchs (NCTU) Combinatorics and Phylogenetics June 14th, 2019 2/36



|
Analytic Combinatorics (ii)

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick
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Outline of the Talk

@ Introduction

@ Biodiversity Indices

F. and Jin (2015). Equality of Shapley value and fair proportion index
in phylogenetic trees.

F. and Paningbatan (2019+). Correlation between Shapley values of
rooted phylogenetic trees under the beta-splitting model.
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Outline of the Talk

@ Introduction

@ Biodiversity Indices

F. and Jin (2015). Equality of Shapley value and fair proportion index
in phylogenetic trees.

F. and Paningbatan (2019+). Correlation between Shapley values of
rooted phylogenetic trees under the beta-splitting model.

© Group Pattern Formation of Social Animals

Drmota, F., Y.-W. Lee (2016). Stochastic analysis of the extra
clustering model for animal grouping.

F., C.-H. Lee, Paningbatan (2019+). Distributional analysis of the
extra clustering model with uniformly generated phylogenetic trees.
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Evolutionary or Phylogenetic tree (=PT)

Bacteria Archaea Eucarya
Green
Filamentous Slime
Spi bacteria lds Apimals
Methanosargina Fungi
Methanobacterjuh Halgphiles

Proteoba Plants
Cyanobacter; Ciliates
Planctomyce Flagellates
Bacteroide: "
Cytophaga Trichomonads

Thermotoga Microsporidia

Aquifex Diplomonads

Phylogenetic tree of size n: rooted, plane, unlabelled binary tree with n
external nodes (and consequently n — 1 internal nodes).
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Aldous (-splitting Model (i)

@ Let f be probability density on [0, 1] which is symmetric (i.e.
flx) = f(1—z))
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Aldous [-splitting Model (i)

@ Let f be probability density on [0, 1] which is symmetric (i.e.

f(x) = f(1 —x))

e Throw n balls uniformly at random into [0, 1].
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Aldous [-splitting Model (i)

@ Let f be probability density on [0, 1] which is symmetric (i.e.
f(@)=f(1-=))
e Throw n balls uniformly at random into [0, 1].

e Split [0, 1] into two subintervals according to f; if one subinterval
contains no ball repeat.
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Aldous [-splitting Model (i)

@ Let f be probability density on [0, 1] which is symmetric (i.e.

f(@) = f(1—x))
e Throw n balls uniformly at random into [0, 1].

e Split [0, 1] into two subintervals according to f; if one subinterval
contains no ball repeat.

@ Recursively continue with the subintervals, where a subinterval [a, ]
is split at a + X (b — a) with X having distribution f.
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Aldous [-splitting Model (i)

@ Let f be probability density on [0, 1] which is symmetric (i.e.

f(@) = f(1—x))
e Throw n balls uniformly at random into [0, 1].

e Split [0, 1] into two subintervals according to f; if one subinterval
contains no ball repeat.

@ Recursively continue with the subintervals, where a subinterval [a, ]
is split at a + X (b — a) with X having distribution f.

@ Stop when a subinterval contains only one ball.
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Aldous [-splitting Model (i)

@ Let f be probability density on [0, 1] which is symmetric (i.e.

f(@) = f(1—x))
e Throw n balls uniformly at random into [0, 1].

@ Split [0, 1] into two subintervals according to f; if one subinterval
contains no ball repeat.

@ Recursively continue with the subintervals, where a subinterval [a, b]
is split at a + X (b — a) with X having distribution f.

@ Stop when a subinterval contains only one ball.

— This gives a probability distribution on PTs of size n.
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Aldous [-splitting Model (ii)
T ...random PT.
Choose a S-distribution (5 > —1):
fa) = ['(268+2) 4

CT2(B+1)
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Aldous [-splitting Model (ii)

T ...random PT.
Choose a S-distribution (5 > —1):

f(z):%mﬂ(l—m)ﬁ, x €[0,1].

Let 7, ; be the probability that left subtree has size 7. Then,

1 TB+i+1D)I(B+n—i+1) |
Wn(B) Z'(?’L—Z)' ) 1<i<n—1,

7Tn’i =

where 7,(3) is a suitable constant.
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Aldous [-splitting Model (ii)

T ...random PT.
Choose a S-distribution (5 > —1):

(@28 +2) 4

f(x)—mx (1—2z)°, z € [0,1].

Let 7, ; be the probability that left subtree has size 7. Then,

1 T(B+i+1)I(B+n—i+1)
n(B) il(n —1)! '

where 7,(3) is a suitable constant.

1<i<n-—1,

7Tn,i =

Note that the above expression makes also sense for —2 < 5 < —1.
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Special Cases
o 3 =0: Yule-Harding model:
1
Tni = 7

1<i<n-—1.
Is also generated by a continuous-time pure birth process..
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Special Cases

o 3 =0: Yule-Harding model:
1 .
MTpi = ——, 1<1<n—1.
’ n—1
Is also generated by a continuous-time pure birth process..
e (3 = —3/2: Uniform or PDA model:

Ci1Cn—i1
Tni =

_ 1<i<n-1
' Cn—l 7 - ’

where C,, = (*")/(n + 1) are the Catalan numbers.

n
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Special Cases

o 3 =0: Yule-Harding model:

1
Tni = —, 1<:<n—1.
n—1

Is also generated by a continuous-time pure birth process..

e (3 = —3/2: Uniform or PDA model:

Wm.:m, 1<i<n-—1,
Cn—l
where C), = (27?)/(71 + 1) are the Catalan numbers.
o 3 = —1: with H, the harmonic numbers:
n 1
= . 1<i<n—1.
T 9 H, i — i) ==

This model seems to have the best match with real trees.
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Lloyd Shapley

Lloyd Shapley
(1923-2016)
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Lloyd Shapley

Shapley value:

Measure of importance of each
player in a cooperative game

Lloyd Shapley
(1923-2016)
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-
Lloyd Shapley

Shapley value:

Measure of importance of each
player in a cooperative game

— recently used as prioritization
tool of taxa in biodiversity

Lloyd Shapley
(1923-2016)
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Shapley Value and Fair Proportion Index
Let 7 be a PT and a a taxon (=leaf) of T.
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Shapley Value and Fair Proportion Index

Let 7' be a PT and a a taxon (=leaf) of T

Rooted Shapley Value SV[}"](a):
svil(a) = = S| = 1)i(n — [S)){(PD7(S) — PDr(S
(@)= — > (8] = Dl(n — |SPUPD(S) 7(5\ {a})),
" S,aeS

where PD(S) is the size of the ancestor tree of S.
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Shapley Value and Fair Proportion Index

Let 7' be a PT and a a taxon (=leaf) of T

Rooted Shapley Value SV[}"](a):

1

SV (a) = — >~ (S| = D(n — |SDIPD7(S) — PDr(S \ {a}),

" S,aeS
where PD(S) is the size of the ancestor tree of S.

Fair Proportion Index FP7(a):
FPr(a) =Y D;',

where D, the number of taxa below e.
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Shapley Value and Fair Proportion Index

Let 7' be a PT and a a taxon (=leaf) of T

Rooted Shapley Value SV[}"](a):
svil(a) = = S| = 1)i(n — [S)){(PD7(S) — PDr(S
(@)= — > (S = 1)(n — |S])(PD(S) r(5\ {a})),
" S,aeS
where PD(S) is the size of the ancestor tree of S.

Fair Proportion Index FP7(a):
FPr(a) =Y D;',

where D, the number of taxa below e.

Used (somehow arbitrarily) for EDGE of Existence conservation program!
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Correlation between SVI"! and FP

Hartmann (2013):

Real trees
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Assume a is in left subtree T; and |T}| = i.
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Assume a is in left subtree T; and |T}| = i.
Lemma
We have,

FPT(CL) = ; + FPTg( )
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Assume a is in left subtree Ty and |T}| = 1.

Lemma
We have,

1
FPT(CL) = Z + FPT,@ (a)

and

T 1 ’I’
SVl (a) = - + 5V, (a)
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syl — Fp

Assume a is in left subtree Ty and |T}| = 1.

Lemma
We have,

1
FPT(CL) = Z + FPTZ(G,).
and

T 1 T
svi(a) = =+ SV (a)

Theorem (F. and Jin; 2015)
We have,

svlil(a) = FP1(a).
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Which Shapley value did Hartmann use?
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Modified Shapley Value

Which Shapley value did Hartmann use?

Modified Shapley Value SV (a):

SVr(@) = 30 (IS]- Ditn— S)IPD(S) ~ PDr(S\ {a}))

" 18]>2,a€8

where PD(S) is as before.
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Modified Shapley Value

Which Shapley value did Hartmann use?
Modified Shapley Value SV (a):
— 1
SVr(a) = — > (18] = Dln—[S)!(PDr(S) — PDr(S \ {a})),
" 18]>2,a€8
where PD(S) is as before.

Theorem (F. and Jin; 2015)
Under the PDA model and the Yule-Harding model,

lim p(SVn, FP,) =1,

n—0o0

where p denotes the correlation coefficient.
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Unrooted Shapley Value
It turned out that Hartmann used yet another Shapley value!
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Unrooted Shapley Value

It turned out that Hartmann used yet another Shapley value!
Unrooted Shapley Value SV[;] (a):

SV (q) = % > (S| = DY(n — [SPUPD2(S) — PD1(S \ {a})),

" S,aeS

where PD(S) is the size of the Steiner tree of S.
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Unrooted Shapley Value

It turned out that Hartmann used yet another Shapley value!
Unrooted Shapley Value SV[;} (a):
SV () = = 37 (15| = 1)l(n — |S)IPDL(S) — PD#(S \ {a}))
@)= (81— Din — [S)PDy (5 {a})).
" S,aeS
where PD(S) is the size of the Steiner tree of S.

Theorem (F. and Paningbatan; 2019+)
Under the B-splitting model with 8 > —1,

lim p(SVIY FP,) =1,

n—o0

where p denotes the correlation coefficient.

v
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Outline of the Proof

@ Bounds for moments of additive shape parameters under the
[-splitting model.
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Outline of the Proof

@ Bounds for moments of additive shape parameters under the
[-splitting model.

For this, we study

n—1

an =2 Z Tn,iGi + by,
i=1

for varying toll-sequence b,,.
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Outline of the Proof

@ Bounds for moments of additive shape parameters under the
[-splitting model.
For this, we study

n—1

an =2 Z Tn,iG; + by

=1

for varying toll-sequence b,,.

@ An expression for the difference:

svi(a) — FPp(a) = SV (a) — SVI(a).
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Outline of the Proof

@ Bounds for moments of additive shape parameters under the
[-splitting model.
For this, we study

n—1

an =2 Z Tn,iGi + by,
i=1

for varying toll-sequence b,,.

@ An expression for the difference:

svi(a) — FPp(a) = SV (a) — SVI(a).

@ Using the above two steps to bound the correlation coefficient with a
bound which tends to 0.
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Master Theorems

Let a,, satisfy the recurrence from the last slide with 3 > —1.

Proposition
Assume that
bp = O(n log’ n)
for integers vv,0 > 0. Then,
(i) ify =1, then a, = O(nlog’' n);
(i) ify > 1, then a, = O(n" log® n).
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Master Theorems

Let a,, satisfy the recurrence from the last slide with 3 > —1.

Proposition
Assume that
bp = O(n log’ n)
for integers vv,0 > 0. Then,
(i) ify =1, then a, = O(nlog’ ' n);
(i) ify > 1, then a, = O(n" log® n).

Proposition

If by, is non-negative and by, > 0 for at least one ng, then

bp, = Q(n).
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Bounds for Moments

Consider the additive shape parameters:
@ Sackin Index S,,: sum over all taxon-root distances;

@ Depth D,,: distance to root of a random taxon.
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Bounds for Moments

Consider the additive shape parameters:

@ Sackin Index S,,: sum over all taxon-root distances;

@ Depth D,,: distance to root of a random taxon.

Corollary

For 8 > —1, we have
E(Sp) = O(nlogn),  E(S;) = O(n’log?n);
E(D,) = O(logn),  E(D}) = O(log” n).
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Bounds for Moments

Consider the additive shape parameters:
@ Sackin Index S,,: sum over all taxon-root distances;

@ Depth D,,: distance to root of a random taxon.

Corollary

For 8 > —1, we have
E(Sp) = O(nlogn),  E(S;) = O(n’log?n);
E(D,) = O(logn),  E(D}) = O(log” n).

Corollary
For 5 > —1, we have

Var(FP,,) = Q(1).
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More Additive Shape Parameters

Two more additive shape parameters:

° X:[,f]: sum of all distances between the root and common ancestor of
sets of size 7;
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More Additive Shape Parameters

Two more additive shape parameters:

° X:[,f]: sum of all distances between the root and common ancestor of
sets of size 7;

° Y:,[,ﬂ (a): sum of all distances between the common ancestors of a set
of size ¢ and the set together with a.
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More Additive Shape Parameters

Two more additive shape parameters:

° X:[,f]: sum of all distances between the root and common ancestor of
sets of size 7;

° Y:,[,ﬂ (a): sum of all distances between the common ancestors of a set
of size ¢ and the set together with a.

X = x4 x4 <\7;e!> (!71}\)

i ) T, .
YT[Z](a) +X:[,£ + | ; ‘), if a € Ty;

We have,

and

i
Yri(a) = . . T
Yil(a) + X3 + ’;‘), if a €T,
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Difference between SV and FP

Proposition

For a € T;, we have

u T 1
svid(a) — svll(a) = - ~Dr(a)
| 1T

it (7))

|Tz| 1

'Zz'n—z—l []()
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Difference between SV and FP

Proposition

For a € T;, we have

u T 1
svid(a) — svll(a) = - ~Dr(a)
| 1T

it (7))

|Tz| 1

'Zz'n—z—l []()

Since FP7, Dy(a), X, v} (a) can all be computed recursively, SVi can
be computed efficiently.
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Does our Theorem extend to f = —1 (and beyond)?

5 =0, n =40 5 =0, n=s0

3 3

E El

z z

) =

- E]

£ £
T Proporton Index o Proportion Index
5= 0.5, n =40 8= 05 n=s0

2 E

El E]

H H

E El

H H

5 5
Fair Proportion Index i Proportion Index
A= —1, n =40 B=—1,n=80

E E

£ £

E E

El

i :

s ]

Fair Proportion Index
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Untooted Shapley Value

5 =0, n =160

Fair Proportion Index.

Fair Proportion Index.

B = —1.n—160

Fair Proportion Index.
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Phylogenetic Trees and Animal Grouping

Let the leaves represent social animals.
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Phylogenetic Trees and Animal Grouping

Let the leaves represent social animals.

Describes the genetic relatedness of the animals.
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Animal Groups
Durand, Blum and Frangois (2007):
Groups contain more likely animals which are genetically related.
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Animal Groups

Durand, Blum and Frangois (2007):
Groups contain more likely animals which are genetically related.

— neutral model.
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Animal Groups

Durand, Blum and Frangois (2007):
Groups contain more likely animals which are genetically related.

— neutral model.

Clade of a leaf:

All leaves of the
tree rooted at the
parent.
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Animal Groups

Durand, Blum and Frangois (2007):
Groups contain more likely animals which are genetically related.

— neutral model.

Clade of a leaf:

All leaves of the
tree rooted at the
parent.

Maximal Clades =
Groups
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Animal Groups

Durand, Blum and Frangois (2007):
Groups contain more likely animals which are genetically related.

— neutral model.

Clade of a leaf:

All leaves of the
tree rooted at the
parent.

Maximal Clades =
Groups
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# of Groups
X, = # of groups
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# of Groups

X, = # of groups
We have,

n =

X1, + X, , otherwise,

where X is an independent copy of X,.

Michael Fuchs (NCTU) Combinatorics and Phylogenetics
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# of Groups
X, = # of groups
We have,
4 )1, ifl,=1lorl,=n—1,
X, = _
X1, + X, , otherwise,

where X is an independent copy of X,.

Extra Clustering Model: 0 <p < 1

We have,
x 4 1, with probability p
n = .
same as neutral model, otherwise.
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# of Groups
X, = # of groups
We have,
4 )1, ifl,=1lorl,=n—1,
X, = _
X1, + X, , otherwise,

where X is an independent copy of X,.

Extra Clustering Model: 0 <p < 1
We have,

y 4 1, with probability p
" same as neutral model, otherwise.

For p = 0 this is the neutral model.

Michael Fuchs (NCTU) Combinatorics and Phylogenetics June 14th, 2019 23/36



Expected Number of Groups — YH Model

Theorem (Durand and Frangois; 2010)
We have,

([ clp)

I'(2(1 —p))
logn

E(X,) ~ 2’

b
2p — 1’
\
where
c(p) == e2(1— p)/ 2pe = p)t(

Michael Fuchs (NCTU)
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Testing for the Neutral Model

Durand, Blum and Francois (2007):

Sample Number of Rate

size herds P
(A)
Springboks (browsers) 149 6 0.40
Springboks (graze) 1064 40 0.24
Fallow deers 349 22 0.23
Grant's gazelles 221 6 0.44
Wild camels 227 2 0.14
Kangaroos 348 41 0.12
African savannah 304 45 0.08
elephants

Sample Number of Rate

size packs/prides p
(B)
Yellowstone Wolves 2002 90 14 0.11
Yellowstone Wolves 2004 112 16 0.12
Alaska Wolves 15 30 0.02
Scandinavian wolf 76 12 0.11
Zambia Kafue lions 95 14 0.12
Sclous Game lions 51 13 0.00
Serengeti lions 100 16 0.10

Michael Fuchs (NCTU)

clustering rates
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034

0.2
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p=0—-YH Model

Theorem (Lee; 2012)

We have,
(1 —e2)2

1
7 nlogn

Var(X,,) ~
and for k > 3,

— e 2\*
]E(Xn—IE(Xn))kN(—l)kkz_kz (1 ; ) nk1,
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p=0—-YH Model

Theorem (Lee; 2012)
We have,

and for k > 3,

_ k
E(X,, — E(Xn))F ~ (=1)F—2F (1_6 2) nk1,

Theorem (Drmota, F., Lee; 2016)

We have,
X, —E(X,) 4

Ve oD
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0 <p<1/2-YH model

Theorem (Drmota, F., Lee; 2016)
We have,

X
n_ 4 X,

nl—2p
with convergence of all moments.
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0 <p<1/2-YH model

Theorem (Drmota, F., Lee; 2016)

We have,

X d
5 X
nt—4p

with convergence of all moments.

Here, the law of X is the sum of a discrete law with mass p/(1 — p) at 0
and a continuous law on [0, c0) with density

B 1—2p 5(p)k
f(z) = =d(p) 1—p ;Okvr( 2(k + 1)p — k)xk

where )
(1 - 2p) Wp,(1—2p)/p (_2(1 - p))

o(p) = . .
®) = Ero=T(1 = p)2 1, (_opyyp (<201 =)
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1/2 <p<1-YH Model

Theorem (Drmota, F., Lee; 2016)

We have,
X, % X,

with convergence of all moments for 1/2 < p < 1.
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1/2 <p<1-YH Model

Theorem (Drmota, F., Lee; 2016)

We have,
X, % X,
with convergence of all moments for 1/2 < p < 1. Here, X is the discrete
law with
1—+/1—4p(1l —pu
E (uX) _ p( p) .
2(1-p)
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1/2 <p<1-YH Model

Theorem (Drmota, F., Lee; 2016)
We have,
X, % X,

with convergence of all moments for 1/2 < p < 1. Here, X is the discrete

law with
1—+/1—4p(1—

2(1-p)

Theorem (Drmota, F., Lee; 2016)
For p =1/2, we have

k' Jop— _ _
BOXE) ~ b log s = (26— DB tan(a)

n

v

Michael Fuchs (NCTU) Combinatorics and Phylogenetics June 14th, 2019 28 /36



A Decomposition
Every PT can be decomposed as:
=] 5 = E DAy
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Every PT can be decomposed as:
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A Decomposition

Every PT can be decomposed as:

For the extra clustering model, one has to introduce weights!
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Two Generating Functions

Weighted binary trees: internal nodes are weighted by ¢ := 1 — p,

G(z) = Z "0, 12" = 2C(q2),

n>1

where C(z) = (1 — /1 —42)/(22).
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Two Generating Functions

Weighted binary trees: internal nodes are weighted by ¢ := 1 — p,

G(z) = Z "0, 12" = 2C(q2),

n>1

where C(z) = (1 — /1 —4z2)/(22).
Maximal clades:
H(z) =22+ Z(pC’n_1 +2¢C)—2)2"
n>3

=22 4+ p2(C(2) — 1 — 2) 4+ 2¢2%(C(2) — 1).
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Two Generating Functions

Weighted binary trees: internal nodes are weighted by ¢ := 1 — p,

G(z) = Z "0, 12" = 2C(q2),

where C(z) = (1 — /1 —42)/(22).

Maximal clades:

H(z) =22+ Z(pC’n_1 +2¢Cp_2)z"
n>3

=22 4+ p2(C(2) — 1 — 2) 4+ 2¢2%(C(2) — 1).

Lemma
We have, G(H(z)) = z2(C(z) — 1) J
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NN
# of Groups — PDA Model
We have,
P(X, = k) = [UkZ”]G(uH(Z))‘

Cn—l
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# of Groups — PDA Model

We have,

Theorem (F., Lee, Paningbatan; 2019+)
We have,

1 3—2p—p?
Xni>X::NB<§,3#)+1

with convergence of all moments.

Michael Fuchs (NCTU) Combinatorics and Phylogenetics June 14th, 2019

31/36



|
# of Groups — PDA Model

We have,

Theorem (F., Lee, Paningbatan; 2019+)
We have,

1 3—2p—p?
Xni>X::NB<§,3#)+1

with convergence of all moments.

Corollary
We have,
E(X,) ~ 5+ 2p + p?
24 4p + 2p%
4
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NN
# of Groups of Size m — PDA Model
With ap, = pCr—1 + (2 = 82.m)qCrm—2,
BOx — 1) = 12

1G(am(u—1)2" + H(z))
Cn—l
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# of Groups of Size m — PDA Model

With a,, = pCr—1 + (2 — 92,m)qCm—2,

E(xIm = ) [uF 2" G (@ (u — 1)2™ + H(z))
" Cn—l
Theorem (F., Lee, Paningbatan; 2019+)
We have,
1 42~myqq,
xlml 4, xIml . NB( = m
G 2" (14p)? + 4> "qam

with convergence of all moments.
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# of Groups of Size m — PDA Model

With a,, = pCr—1 + (2 — 92,m)qCm—2,

B _ gy — 127G @~ D27 1 H )

Cn—l
Theorem (F., Lee, Paningbatan; 2019+)
We have,
2—m
xIml 4, ximl . g (1 4 "q0m
" 2" (1+p)?+42-"qa,,

with convergence of all moments.

Corollary

We have 3, -, B(X[M) = E(X) + 1.
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NS
Largest Groups Size — PDA Model (i)
For the largest group size M,,, we have
P(M, =n—k)=
where 0 < k < n/2.

(MG (H (2))[2""*|H (2)

C’n—l

9
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Largest Groups Size — PDA Model (i)

For the largest group size M,,, we have

(MG (H (2))[2""*|H (2)

P(M,=n—k) = ,
( n—k) Co
where 0 < k < n/2.
Theorem (F., Lee, Paningbatan; 2019+)
We have,
n— M, -% M,

where M has probability generating function (1 + p)/(2F (u/4)) with

F(u) = \/r(u) —2p(p — 2qu)V1 — 4u,

where r(u) = 1 — 2p + 2p? — 4(1 — 2p)qu + 4¢°u>.

v
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BN
Largest Group Size — PDA Model (ii)
In the limit theorem for M,,, moments do not converge.
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Largest Group Size — PDA Model (ii)

In the limit theorem for M,,, moments do not converge.

Theorem (F., Lee, Paningbatan; 2019+)

We have, % o o
E(M,)=n— W?’L +o(n/*)
and for > 2,
E((Mn — E(M))") ~ (=1)'den‘1/2,
where

dy = K 3/2 )_3/2dl‘.

1+p\/_/
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Largest Group Size — PDA Model (ii)

In the limit theorem for M,,, moments do not converge.

Theorem (F., Lee, Paningbatan; 2019+)

We have, % o o
E(M,)=n— WTL +o(n/*)
and for > 2,
E((Mn — E(M))") ~ (=1)'den‘1/2,
where

dy = Z 3/2 )_3/2dl‘.

1+p\/_/

Proof uses singularity analysis and Euler-Maclaurin summation formula.
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Summary and Open Problems
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Summary and Open Problems

@ We studied the correlation coefficient of biodiversity indices.

@ We studied the extra clustering model when trees are generated by
the PDA model.

Our result shows that on average there is only a finite number of

groups all of which are small except one group which contains almost
all animals.

@ How about the number of groups of fixed size and largest group size
under the YH model?

Mean for number of groups of fixed size was studied by Durand and
Frangois (2010).
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Summary and Open Problems

@ We studied the correlation coefficient of biodiversity indices.

@ We studied the extra clustering model when trees are generated by
the PDA model.

Our result shows that on average there is only a finite number of

groups all of which are small except one group which contains almost
all animals.

@ How about the number of groups of fixed size and largest group size
under the YH model?

Mean for number of groups of fixed size was studied by Durand and
Francois (2010). Refined results will appear in:

A. Paningbatan (2020). Three Combinatorial Topics Arising from
Phylogenetics, PhD thesis, in preparation.
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