
Dependencies between Shape Parameters in
Random Log-Trees

(joint with H.-H. Chern, H.-K. Hwang and R. Neininger)

Michael Fuchs

Institute of Applied Mathematics
National Chiao Tung University

Hsinchu, Taiwan

Chennai, July 10, 2015

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 1 / 31

Random Trees

Random
Trees

Theory Applications

Combinatorial

Probabilistical

Analytical

Computer Science

Information Theory

Mathematical Biology

Chemistry

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 2 / 31

√
n-Trees vs. Log-Trees

Random
Trees

Log-Trees

Increasing Trees

Network Models

Leader Selection

Conflict Resolution

Algorithms

Data Structures

√
n-Trees

Combinatorial Trees

Galton Watson Process

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 3 / 31

Random Log-Trees

6

2 8

1 4 7 10

3 5 9

Trees are equipped with a
random model

−→ Random Trees

Average height of logarithmic
order

−→ Random Log-Trees

Properties are described via
Shape Parameters

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 4 / 31

Random Log-Trees

6

2 8

1 4 7 10

3 5 9

Trees are equipped with a
random model

−→ Random Trees

Average height of logarithmic
order

−→ Random Log-Trees

Properties are described via
Shape Parameters

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 4 / 31

Random Log-Trees

6

2 8

1 4 7 10

3 5 9

Trees are equipped with a
random model

−→ Random Trees

Average height of logarithmic
order

−→ Random Log-Trees

Properties are described via
Shape Parameters

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 4 / 31

Random Log-Trees

6

2 8

1 4 7 10

3 5 9

Trees are equipped with a
random model

−→ Random Trees

Average height of logarithmic
order

−→ Random Log-Trees

Properties are described via
Shape Parameters

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 4 / 31

Examples of Random Log-Trees

Binary Search Trees and Variants

Binary search trees, m-ary search trees, fringe balanced binary search
trees, quadtrees, simplex trees, etc.

Digital Trees

Digital search trees, bucket digital search trees, tries, PATRICIA tries,
suffix trees, etc.

Increasing Trees

Binary increasing trees (=binary search trees), recursive trees,
plane-oriented recursive trees, etc.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 5 / 31

Examples of Random Log-Trees

Binary Search Trees and Variants

Binary search trees, m-ary search trees, fringe balanced binary search
trees, quadtrees, simplex trees, etc.

Digital Trees

Digital search trees, bucket digital search trees, tries, PATRICIA tries,
suffix trees, etc.

Increasing Trees

Binary increasing trees (=binary search trees), recursive trees,
plane-oriented recursive trees, etc.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 5 / 31

Examples of Random Log-Trees

Binary Search Trees and Variants

Binary search trees, m-ary search trees, fringe balanced binary search
trees, quadtrees, simplex trees, etc.

Digital Trees

Digital search trees, bucket digital search trees, tries, PATRICIA tries,
suffix trees, etc.

Increasing Trees

Binary increasing trees (=binary search trees), recursive trees,
plane-oriented recursive trees, etc.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 5 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2

8

1 4 7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2

8

1

4

7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1

4

7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1

4 7

10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7

10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7

10

3

5

9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7

10

3 5

9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7 10

3 5

9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Binary Search Trees (BSTs)

6

2 8

1 4 7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 6 / 31

Examples of Shape Parameters

Height (= maximal root-distance)

Depth (= root-distance of a random node)

Total Path Length (= sum of all root-distances)

Size or Storage Requirement

Number of Leaves (or more generally, number of nodes of fixed
out-degree)

Patterns

Profiles (node profile, subtree size profile, etc.)

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 7 / 31

(Average Case) Analysis of Algorithms

Donald E. Knuth
Notes on Open Addressing

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 8 / 31

Analysis of Algorithms and Related Fields

Analysis of
Algorithms

Probability
Theory

Complex
Analysis

Asymptotic
Analysis

Number
Theory

Analytic
Combina-
torics

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 9 / 31

Analytic Combinatorics

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 10 / 31

Random m-ary Search Trees

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

2, 6

1 4, 5 7, 8

3 9, 10

m = 3

2, 4, 6

31 5 7, 8, 9

10

m = 4

If permutations are equally likely −→ random m-ary search trees

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 11 / 31

Random m-ary Search Trees

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

2, 6

1 4, 5 7, 8

3 9, 10

m = 3

2, 4, 6

31 5 7, 8, 9

10

m = 4

If permutations are equally likely −→ random m-ary search trees

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 11 / 31

Random m-ary Search Trees

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

2, 6

1 4, 5 7, 8

3 9, 10

m = 3

2, 4, 6

31 5 7, 8, 9

10

m = 4

If permutations are equally likely −→ random m-ary search trees

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 11 / 31

Random m-ary Search Trees

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

2, 6

1 4, 5 7, 8

3 9, 10

m = 3

2, 4, 6

31 5 7, 8, 9

10

m = 4

If permutations are equally likely −→ random m-ary search trees

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 11 / 31

Random m-ary Search Trees

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

2, 6

1 4, 5 7, 8

3 9, 10

m = 3

2, 4, 6

31 5 7, 8, 9

10

m = 4

If permutations are equally likely −→ random m-ary search trees

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 11 / 31

Size, KPL, and NPL

Size (or Storage Requirement)

Number of nodes holding keys. Only random if m ≥ 2.

Sn = size of a random m-ary search tree built from n keys.

Key Path Length (KPL)

Sum of all key-distances to the root.

Kn = KPL of a random m-ary search tree built from n keys.

Node Path Length (NPL)

Sum of all node-distances to the root.

Nn = NPL of a random m-ary search tree built from n keys.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 12 / 31

Size, KPL, and NPL

Size (or Storage Requirement)

Number of nodes holding keys. Only random if m ≥ 2.

Sn = size of a random m-ary search tree built from n keys.

Key Path Length (KPL)

Sum of all key-distances to the root.

Kn = KPL of a random m-ary search tree built from n keys.

Node Path Length (NPL)

Sum of all node-distances to the root.

Nn = NPL of a random m-ary search tree built from n keys.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 12 / 31

Size, KPL, and NPL

Size (or Storage Requirement)

Number of nodes holding keys. Only random if m ≥ 2.

Sn = size of a random m-ary search tree built from n keys.

Key Path Length (KPL)

Sum of all key-distances to the root.

Kn = KPL of a random m-ary search tree built from n keys.

Node Path Length (NPL)

Sum of all node-distances to the root.

Nn = NPL of a random m-ary search tree built from n keys.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 12 / 31

Size: Mean

Knuth (1973):
E(Sn) ∼ φn,

where

φ :=
1

2(Hm − 1)

and Hm are the Harmonic numbers.

Mahmoud and Pittel (1989):

E(Sn) = φ(n+ 1)− 1

m− 1
+O(nα−1),

where α is the real part of the second largest zero of

Λ(z) = z(z + 1) · · · (z +m− 2)−m!.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 13 / 31

Size: Mean

Knuth (1973):
E(Sn) ∼ φn,

where

φ :=
1

2(Hm − 1)

and Hm are the Harmonic numbers.

Mahmoud and Pittel (1989):

E(Sn) = φ(n+ 1)− 1

m− 1
+O(nα−1),

where α is the real part of the second largest zero of

Λ(z) = z(z + 1) · · · (z +m− 2)−m!.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 13 / 31

Size: Phase Change for Variance

Mahmoud and Pittel (1989):

Var(Sn) ∼

{
CSn, if m ≤ 26;

F1(β log n)n2α−2, if m ≥ 27,

where λ = α+ iβ is the second largest zero of Λ(z).

Here, F1(z) is the periodic function

F1(z) = 2
|A|2

|Γ(λ)|2

(
−1 +

m!(m− 1)|Γ(λ)|2

Γ(2α+m− 2)−m!Γ(2α− 1)

)
+ 2<

(
A2e2iz

Γ(λ)2

(
−1 +

m!(m− 1)Γ(λ)2

Γ(2λ+m− 2)−m!Γ(2λ− 1)

))
with A = 1/(λ(λ− 1)

∑
0≤j≤m−2

1
j+λ).

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 14 / 31

Size: Phase Change for Variance

Mahmoud and Pittel (1989):

Var(Sn) ∼

{
CSn, if m ≤ 26;

F1(β log n)n2α−2, if m ≥ 27,

where λ = α+ iβ is the second largest zero of Λ(z).

Here, F1(z) is the periodic function

F1(z) = 2
|A|2

|Γ(λ)|2

(
−1 +

m!(m− 1)|Γ(λ)|2

Γ(2α+m− 2)−m!Γ(2α− 1)

)
+ 2<

(
A2e2iz

Γ(λ)2

(
−1 +

m!(m− 1)Γ(λ)2

Γ(2λ+m− 2)−m!Γ(2λ− 1)

))
with A = 1/(λ(λ− 1)

∑
0≤j≤m−2

1
j+λ).

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 14 / 31

Size: Phase Change for Limit Law

Theorem (Mahmoud & Pittel (1989); Lew & Mahmoud (1994))

For 3 ≤ m ≤ 26,
Sn − E(Sn)√

Var(Sn)

d−→ N(0, 1),

where N(0, 1) is the standard normal distribution.

Theorem (Chern & Hwang (2001))

For m ≥ 27,
Sn − E(Sn)√

Var(Sn)

does not converge to a fixed limit law.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 15 / 31

Size: Phase Change for Limit Law

Theorem (Mahmoud & Pittel (1989); Lew & Mahmoud (1994))

For 3 ≤ m ≤ 26,
Sn − E(Sn)√

Var(Sn)

d−→ N(0, 1),

where N(0, 1) is the standard normal distribution.

Theorem (Chern & Hwang (2001))

For m ≥ 27,
Sn − E(Sn)√

Var(Sn)

does not converge to a fixed limit law.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 15 / 31

KPL: Moments

Mahmoud (1986):

E(Kn) = 2φn log n+ c1n+ o(n),

where c1 is an explicitly computable constant.

Mahmoud (1992):
Var(Kn) ∼ CKn2,

where

CK = 4φ2

(
(m+ 1)H

(2)
m − 2

m− 1
− π2

6

)

with H
(2)
m =

∑
1≤j≤m 1/j2.

So, no phase change here for the variance!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 16 / 31

KPL: Moments

Mahmoud (1986):

E(Kn) = 2φn log n+ c1n+ o(n),

where c1 is an explicitly computable constant.

Mahmoud (1992):
Var(Kn) ∼ CKn2,

where

CK = 4φ2

(
(m+ 1)H

(2)
m − 2

m− 1
− π2

6

)

with H
(2)
m =

∑
1≤j≤m 1/j2.

So, no phase change here for the variance!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 16 / 31

KPL: Moments

Mahmoud (1986):

E(Kn) = 2φn log n+ c1n+ o(n),

where c1 is an explicitly computable constant.

Mahmoud (1992):
Var(Kn) ∼ CKn2,

where

CK = 4φ2

(
(m+ 1)H

(2)
m − 2

m− 1
− π2

6

)

with H
(2)
m =

∑
1≤j≤m 1/j2.

So, no phase change here for the variance!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 16 / 31

KPL: Limit Law

Theorem (Neininger & Rüschendorf (1999))

We have,
Kn − E(Kn)

n

d−→ K,

where K is the unique solution of

X
d
=

∑
1≤r≤m

VrX
(r) + 2φ

∑
1≤r≤m

Vr log Vr

with X(r) an independent copy of X and

Vr = U(r) − U(r−1),

where U(r) is the r-th order statistic of m i.i.d. uniform RVs.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 17 / 31

Node Path Length (NPL)

Nn = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

E(Nn) = 2φ2n log n+ c2n+ o(n),

where c2 is an explicitly computable constant.

We have, {
Sn

d
= S

(1)
I1

+ · · ·+ S
(m)
Im

+ 1,

Nn
d
= N

(1)
I1

+ · · ·+N
(m)
Im

+ S
(1)
I1

+ · · ·+ S
(m)
Im

.

So, one expects a strong positive dependence between Sn and Nn!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 18 / 31

Node Path Length (NPL)

Nn = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

E(Nn) = 2φ2n log n+ c2n+ o(n),

where c2 is an explicitly computable constant.

We have, {
Sn

d
= S

(1)
I1

+ · · ·+ S
(m)
Im

+ 1,

Nn
d
= N

(1)
I1

+ · · ·+N
(m)
Im

+ S
(1)
I1

+ · · ·+ S
(m)
Im

.

So, one expects a strong positive dependence between Sn and Nn!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 18 / 31

Node Path Length (NPL)

Nn = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

E(Nn) = 2φ2n log n+ c2n+ o(n),

where c2 is an explicitly computable constant.

We have, {
Sn

d
= S

(1)
I1

+ · · ·+ S
(m)
Im

+ 1,

Nn
d
= N

(1)
I1

+ · · ·+N
(m)
Im

+ S
(1)
I1

+ · · ·+ S
(m)
Im

.

So, one expects a strong positive dependence between Sn and Nn!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 18 / 31

Node Path Length (NPL)

Nn = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

E(Nn) = 2φ2n log n+ c2n+ o(n),

where c2 is an explicitly computable constant.

We have, {
Sn

d
= S

(1)
I1

+ · · ·+ S
(m)
Im

+ 1,

Nn
d
= N

(1)
I1

+ · · ·+N
(m)
Im

+ S
(1)
I1

+ · · ·+ S
(m)
Im

.

So, one expects a strong positive dependence between Sn and Nn!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 18 / 31

Size and NPL: Correlation (i)

Theorem (Chern, F., Hwang, Neininger (2015+))

We have,

Cov(Sn, Nn) ∼

{
CRn log n, if 3 ≤ m ≤ 13;

φF2(β log n)nα, if m ≥ 14,
,

where CR is a constant and F2(z) is a periodic function. Moreover,

Var(Nn) ∼ φ2CKn2.

Thus (!),

ρ(Sn, Nn)

−→ 0, if 3 ≤ m ≤ 26;

∼ F2(β logn)√
CKF1(β logn)

, if m ≥ 27.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 19 / 31

Size and NPL: Correlation (i)

Theorem (Chern, F., Hwang, Neininger (2015+))

We have,

Cov(Sn, Nn) ∼

{
CRn log n, if 3 ≤ m ≤ 13;

φF2(β log n)nα, if m ≥ 14,
,

where CR is a constant and F2(z) is a periodic function. Moreover,

Var(Nn) ∼ φ2CKn2.

Thus (!),

ρ(Sn, Nn)

−→ 0, if 3 ≤ m ≤ 26;

∼ F2(β logn)√
CKF1(β logn)

, if m ≥ 27.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 19 / 31

Size and NPL: Correlation (ii)

Periodic function of ρ(Sn, Nn) for m = 27, 54, . . . , 270.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 20 / 31

Pearson’s Correlation Coefficient

Pearson: for RVs X and Y

ρ(X,Y) =
Cov(X,Y)√

Var(X)Var(Y)
.

Measures linear dependence between X and Y !

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total
correlation, dual total correlation, etc.

Question: Can our counterintuitive result for ρ(Sn, Nn) be ascribed to the
weakness of Pearson’s correlation coefficient? NO!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 21 / 31

Pearson’s Correlation Coefficient

Pearson: for RVs X and Y

ρ(X,Y) =
Cov(X,Y)√

Var(X)Var(Y)
.

Measures linear dependence between X and Y !

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total
correlation, dual total correlation, etc.

Question: Can our counterintuitive result for ρ(Sn, Nn) be ascribed to the
weakness of Pearson’s correlation coefficient? NO!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 21 / 31

Pearson’s Correlation Coefficient

Pearson: for RVs X and Y

ρ(X,Y) =
Cov(X,Y)√

Var(X)Var(Y)
.

Measures linear dependence between X and Y !

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total
correlation, dual total correlation, etc.

Question: Can our counterintuitive result for ρ(Sn, Nn) be ascribed to the
weakness of Pearson’s correlation coefficient?

NO!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 21 / 31

Pearson’s Correlation Coefficient

Pearson: for RVs X and Y

ρ(X,Y) =
Cov(X,Y)√

Var(X)Var(Y)
.

Measures linear dependence between X and Y !

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total
correlation, dual total correlation, etc.

Question: Can our counterintuitive result for ρ(Sn, Nn) be ascribed to the
weakness of Pearson’s correlation coefficient? NO!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 21 / 31

Size and NPL: Limit Law for 3 ≤ m ≤ 26

Theorem (Chern, F., Hwang, Neininger (2015+))

Consider
Qn = (Sn, Nn).

Then,

Cov(Qn)−1/2(Qn − E(Qn))
d−→ (N,K),

where N has a standard normal distribution.

Moreover, N and K are independent!

Thus, asymptotic independence for 3 ≤ m ≤ 26 is also observed in the
bivariate limit law!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 22 / 31

Size and NPL: Limit Law for 3 ≤ m ≤ 26

Theorem (Chern, F., Hwang, Neininger (2015+))

Consider
Qn = (Sn, Nn).

Then,

Cov(Qn)−1/2(Qn − E(Qn))
d−→ (N,K),

where N has a standard normal distribution.

Moreover, N and K are independent!

Thus, asymptotic independence for 3 ≤ m ≤ 26 is also observed in the
bivariate limit law!

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 22 / 31

Size and NPL: Limit Law for m ≥ 27

Theorem (Chern, F., Hwang, Neininger (2015+))

Consider

Yn =

(
Sn − φn
nα−1

,
Nn − E(Nn)

n

)
.

Then,
`2(Yn, (<(niβΛ),K)) −→ 0,

where `2 is the minimal L2-metric and Λ is the unique solution of

W
d
=

∑
1≤r≤m

V λ−1
r W (r)

with W (r) independent copies of W .

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 23 / 31

Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31

Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31

Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3

⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31

Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31

Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31

Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31

Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31

Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31

FBBSTs: Means

Chern and Hwang (2001):

E(Sn) =
n+ 1

2(t+ 1)(H2t+2 −Ht+1)
− 1 +O(nαt−1),

where αt is the real part of the second largest zero of

Λt(z) = (z + t) · · · (z + 2t)− 2(2t+ 1)!

t!
.

With the tools from Chern and Hwang (2001):

E(Tn) =
n log n

H2t+2 −Ht+1
+ ctn+ o(n),

where ct is an explicitly computable constant.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 25 / 31

FBBSTs: Means

Chern and Hwang (2001):

E(Sn) =
n+ 1

2(t+ 1)(H2t+2 −Ht+1)
− 1 +O(nαt−1),

where αt is the real part of the second largest zero of

Λt(z) = (z + t) · · · (z + 2t)− 2(2t+ 1)!

t!
.

With the tools from Chern and Hwang (2001):

E(Tn) =
n log n

H2t+2 −Ht+1
+ ctn+ o(n),

where ct is an explicitly computable constant.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 25 / 31

FBBSTs: Variances and Covariance

Theorem (Chern, F., Hwang, Neininger (2015+))

We have,

Var(Sn) ∼

{
DSn, if 1 ≤ t ≤ 58;

G1(βt log n)n2αt−2, if t ≥ 59,

Cov(Sn, Tn) ∼

{
DRn, if 1 ≤ t ≤ 28;

G2(βt log n)nαt , if t ≥ 29,

Var(Tn) ∼ DTn
2,

where DS , DR, DT are constants and G1(z), G2(z) are periodic functions.
Moreover, λt = αt + iβt is the second largest root of Λt(z).

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 26 / 31

FBBSTs: Limit Law for 1 ≤ t ≤ 58

Theorem (Chern, F., Hwang, Neininger (2015+))

For Xn = (Sn, Tn), we have

Cov(Xn)−1/2(Xn − E(Xn))
d−→ (N,T),

with N,T independent, where N has a standard normal distribution and T
is the unique solution of

X
d
= V X(1) + (1− V)X(2) +D

−1/2
X

+
1

D
1/2
X (H2t+2 −Ht+1)

(V log V + (1− V) log(1− V)),

where X(i) are independent copies of X and V is the median of 2t+ 1
i.i.d. uniform RVs.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 27 / 31

FBBSTs: Limit Law for t ≥ 59

Theorem (Chern, F., Hwang, Neininger (2015+))

Consider

Zn =

(
Sn − n/((t+ 1)(H2t+2 −Ht+1))

nαt−1
,
Tn − E(Tn)

n

)
.

Then,
`2(Zn, (<(niβΛ), T)) −→ 0,

where Λ is the unique solution of

W
d
= V λtW (1) + (1− V)λtW (2)

with W (i) independent copies of W .

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 28 / 31

Median-of-2t+ 1 Quicksort

Invented by T. Hoare in 1960.

One of the most important algorithm in computer science.

Example: t = 0 and input sequence 3, 1, 5, 6, 2, 4.

(i) Choose first key (3) as pivot element.

(ii) Split the remaining keys into two sequences, one containing all keys
smaller than the pivot (1, 2) and the other containing all keys larger
than the pivot (5, 6, 4).

(iii) Recursively continue with the subsequences.

Median of 2t+ 1 keys as pivot −→ Median-of-2t+ 1 Quicksort

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 29 / 31

Median-of-2t+ 1 Quicksort

Invented by T. Hoare in 1960.

One of the most important algorithm in computer science.

Example: t = 0 and input sequence 3, 1, 5, 6, 2, 4.

(i) Choose first key (3) as pivot element.

(ii) Split the remaining keys into two sequences, one containing all keys
smaller than the pivot (1, 2) and the other containing all keys larger
than the pivot (5, 6, 4).

(iii) Recursively continue with the subsequences.

Median of 2t+ 1 keys as pivot −→ Median-of-2t+ 1 Quicksort

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 29 / 31

Median-of-2t+ 1 Quicksort

Invented by T. Hoare in 1960.

One of the most important algorithm in computer science.

Example: t = 0 and input sequence 3, 1, 5, 6, 2, 4.

(i) Choose first key (3) as pivot element.

(ii) Split the remaining keys into two sequences, one containing all keys
smaller than the pivot (1, 2) and the other containing all keys larger
than the pivot (5, 6, 4).

(iii) Recursively continue with the subsequences.

Median of 2t+ 1 keys as pivot −→ Median-of-2t+ 1 Quicksort

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 29 / 31

Median-of-2t+ 1 Quicksort

Invented by T. Hoare in 1960.

One of the most important algorithm in computer science.

Example: t = 0 and input sequence 3, 1, 5, 6, 2, 4.

(i) Choose first key (3) as pivot element.

(ii) Split the remaining keys into two sequences, one containing all keys
smaller than the pivot (1, 2) and the other containing all keys larger
than the pivot (5, 6, 4).

(iii) Recursively continue with the subsequences.

Median of 2t+ 1 keys as pivot −→ Median-of-2t+ 1 Quicksort

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 29 / 31

Median-of-2t+ 1 Quicksort

Invented by T. Hoare in 1960.

One of the most important algorithm in computer science.

Example: t = 0 and input sequence 3, 1, 5, 6, 2, 4.

(i) Choose first key (3) as pivot element.

(ii) Split the remaining keys into two sequences, one containing all keys
smaller than the pivot (1, 2) and the other containing all keys larger
than the pivot (5, 6, 4).

(iii) Recursively continue with the subsequences.

Median of 2t+ 1 keys as pivot −→ Median-of-2t+ 1 Quicksort

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 29 / 31

Median-of-2t+ 1 Quicksort

Invented by T. Hoare in 1960.

One of the most important algorithm in computer science.

Example: t = 0 and input sequence 3, 1, 5, 6, 2, 4.

(i) Choose first key (3) as pivot element.

(ii) Split the remaining keys into two sequences, one containing all keys
smaller than the pivot (1, 2) and the other containing all keys larger
than the pivot (5, 6, 4).

(iii) Recursively continue with the subsequences.

Median of 2t+ 1 keys as pivot −→ Median-of-2t+ 1 Quicksort

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 29 / 31

Median-of-2t+ 1 Quicksort

Invented by T. Hoare in 1960.

One of the most important algorithm in computer science.

Example: t = 0 and input sequence 3, 1, 5, 6, 2, 4.

(i) Choose first key (3) as pivot element.

(ii) Split the remaining keys into two sequences, one containing all keys
smaller than the pivot (1, 2) and the other containing all keys larger
than the pivot (5, 6, 4).

(iii) Recursively continue with the subsequences.

Median of 2t+ 1 keys as pivot −→ Median-of-2t+ 1 Quicksort

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 29 / 31

Comparisons and Partitioning Stages

Consider quicksort on a random permutation of length n.

Cn = number of key comparison.

Pn = number of recursive calls (=partitioning stages).

Median-of-2t+ 1 Quicksort ←→ FBBSTs

Theorem (Chern, F., Hwang, Neininger (2015+))

For 0 ≤ t ≤ 58, we have

ρ(Cn, Pn)→ 0.

For t ≥ 59, we have that Cn and Pn are asymptotically dependent.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 30 / 31

Comparisons and Partitioning Stages

Consider quicksort on a random permutation of length n.

Cn = number of key comparison.

Pn = number of recursive calls (=partitioning stages).

Median-of-2t+ 1 Quicksort ←→ FBBSTs

Theorem (Chern, F., Hwang, Neininger (2015+))

For 0 ≤ t ≤ 58, we have

ρ(Cn, Pn)→ 0.

For t ≥ 59, we have that Cn and Pn are asymptotically dependent.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 30 / 31

Comparisons and Partitioning Stages

Consider quicksort on a random permutation of length n.

Cn = number of key comparison.

Pn = number of recursive calls (=partitioning stages).

Median-of-2t+ 1 Quicksort ←→ FBBSTs

Theorem (Chern, F., Hwang, Neininger (2015+))

For 0 ≤ t ≤ 58, we have

ρ(Cn, Pn)→ 0.

For t ≥ 59, we have that Cn and Pn are asymptotically dependent.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 30 / 31

Comparisons and Partitioning Stages

Consider quicksort on a random permutation of length n.

Cn = number of key comparison.

Pn = number of recursive calls (=partitioning stages).

Median-of-2t+ 1 Quicksort ←→ FBBSTs

Theorem (Chern, F., Hwang, Neininger (2015+))

For 0 ≤ t ≤ 58, we have

ρ(Cn, Pn)→ 0.

For t ≥ 59, we have that Cn and Pn are asymptotically dependent.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 30 / 31

Summary and Open Questions

We studied dependencies between shape parameters in random m-ary
search trees and discovered further phase changes.

We proved similar results for variants of m-ary search trees such as
fringe balanced binary search trees and quadtrees.

Our result for the correlation are surprising and counterintuitive.

Heuristic explanation of our results?

Similar surprises for digital trees?

How about random
√
n-trees?

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 31 / 31

Summary and Open Questions

We studied dependencies between shape parameters in random m-ary
search trees and discovered further phase changes.

We proved similar results for variants of m-ary search trees such as
fringe balanced binary search trees and quadtrees.

Our result for the correlation are surprising and counterintuitive.

Heuristic explanation of our results?

Similar surprises for digital trees?

How about random
√
n-trees?

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 31 / 31

Summary and Open Questions

We studied dependencies between shape parameters in random m-ary
search trees and discovered further phase changes.

We proved similar results for variants of m-ary search trees such as
fringe balanced binary search trees and quadtrees.

Our result for the correlation are surprising and counterintuitive.

Heuristic explanation of our results?

Similar surprises for digital trees?

How about random
√
n-trees?

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 31 / 31

Summary and Open Questions

We studied dependencies between shape parameters in random m-ary
search trees and discovered further phase changes.

We proved similar results for variants of m-ary search trees such as
fringe balanced binary search trees and quadtrees.

Our result for the correlation are surprising and counterintuitive.

Heuristic explanation of our results?

Similar surprises for digital trees?

How about random
√
n-trees?

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 31 / 31

Summary and Open Questions

We studied dependencies between shape parameters in random m-ary
search trees and discovered further phase changes.

We proved similar results for variants of m-ary search trees such as
fringe balanced binary search trees and quadtrees.

Our result for the correlation are surprising and counterintuitive.

Heuristic explanation of our results?

Similar surprises for digital trees?

How about random
√
n-trees?

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 31 / 31

Summary and Open Questions

We studied dependencies between shape parameters in random m-ary
search trees and discovered further phase changes.

We proved similar results for variants of m-ary search trees such as
fringe balanced binary search trees and quadtrees.

Our result for the correlation are surprising and counterintuitive.

Heuristic explanation of our results?

Similar surprises for digital trees?

How about random
√
n-trees?

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 31 / 31

