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Examples of Random Log-Trees

Binary Search Trees and Variants

Binary search trees, m-ary search trees, fringe balanced binary search
trees, quadtrees, simplex trees, etc.

Digital Trees

Digital search trees, bucket digital search trees, tries, PATRICIA tries,
suffix trees, etc.

Increasing Trees

Binary increasing trees (=binary search trees), recursive trees,
plane-oriented recursive trees, etc.
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Binary Search Trees (BSTs)

6

2 8

1 4 7 10

3 5 9

Input:

6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If every permutation of the
input sequence is equally likely

−→ Random BSTs

Shape parameters become
random variables
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Examples of Shape Parameters

Height (= maximal root-distance)

Depth (= root-distance of a random node)

Total Path Length (= sum of all root-distances)

Size or Storage Requirement

Number of Leaves (or more generally, number of nodes of fixed
out-degree)

Patterns

Profiles (node profile, subtree size profile, etc.)
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(Average Case) Analysis of Algorithms

Donald E. Knuth
Notes on Open Addressing
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Analysis of Algorithms and Related Fields

Analysis of
Algorithms

Probability
Theory

Complex
Analysis

Asymptotic
Analysis

Number
Theory

Analytic
Combina-
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Analytic Combinatorics
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Random m-ary Search Trees

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

2, 6

1 4, 5 7, 8

3 9, 10

m = 3

2, 4, 6

31 5 7, 8, 9

10

m = 4

If permutations are equally likely −→ random m-ary search trees
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Size, KPL, and NPL

Size (or Storage Requirement)

Number of nodes holding keys. Only random if m ≥ 2.

Sn = size of a random m-ary search tree built from n keys.

Key Path Length (KPL)

Sum of all key-distances to the root.

Kn = KPL of a random m-ary search tree built from n keys.

Node Path Length (NPL)

Sum of all node-distances to the root.

Nn = NPL of a random m-ary search tree built from n keys.
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Size: Mean

Knuth (1973):
E(Sn) ∼ φn,

where

φ :=
1

2(Hm − 1)

and Hm are the Harmonic numbers.

Mahmoud and Pittel (1989):

E(Sn) = φ(n+ 1)− 1

m− 1
+O(nα−1),

where α is the real part of the second largest zero of

Λ(z) = z(z + 1) · · · (z +m− 2)−m!.
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Size: Phase Change for Variance

Mahmoud and Pittel (1989):

Var(Sn) ∼

{
CSn, if m ≤ 26;

F1(β log n)n2α−2, if m ≥ 27,

where λ = α+ iβ is the second largest zero of Λ(z).

Here, F1(z) is the periodic function

F1(z) = 2
|A|2

|Γ(λ)|2

(
−1 +

m!(m− 1)|Γ(λ)|2

Γ(2α+m− 2)−m!Γ(2α− 1)

)
+ 2<

(
A2e2iz

Γ(λ)2

(
−1 +

m!(m− 1)Γ(λ)2

Γ(2λ+m− 2)−m!Γ(2λ− 1)

))
with A = 1/(λ(λ− 1)

∑
0≤j≤m−2

1
j+λ).
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Size: Phase Change for Limit Law

Theorem (Mahmoud & Pittel (1989); Lew & Mahmoud (1994))

For 3 ≤ m ≤ 26,
Sn − E(Sn)√

Var(Sn)

d−→ N(0, 1),

where N(0, 1) is the standard normal distribution.

Theorem (Chern & Hwang (2001))

For m ≥ 27,
Sn − E(Sn)√

Var(Sn)

does not converge to a fixed limit law.
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KPL: Moments

Mahmoud (1986):

E(Kn) = 2φn log n+ c1n+ o(n),

where c1 is an explicitly computable constant.

Mahmoud (1992):
Var(Kn) ∼ CKn2,

where

CK = 4φ2

(
(m+ 1)H

(2)
m − 2

m− 1
− π2

6

)

with H
(2)
m =

∑
1≤j≤m 1/j2.

So, no phase change here for the variance!
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KPL: Limit Law

Theorem (Neininger & Rüschendorf (1999))

We have,
Kn − E(Kn)

n

d−→ K,

where K is the unique solution of

X
d
=

∑
1≤r≤m

VrX
(r) + 2φ

∑
1≤r≤m

Vr log Vr

with X(r) an independent copy of X and

Vr = U(r) − U(r−1),

where U(r) is the r-th order statistic of m i.i.d. uniform RVs.
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Node Path Length (NPL)

Nn = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

E(Nn) = 2φ2n log n+ c2n+ o(n),

where c2 is an explicitly computable constant.

We have, {
Sn

d
= S

(1)
I1

+ · · ·+ S
(m)
Im

+ 1,

Nn
d
= N

(1)
I1

+ · · ·+N
(m)
Im

+ S
(1)
I1

+ · · ·+ S
(m)
Im

.

So, one expects a strong positive dependence between Sn and Nn!
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Size and NPL: Correlation (i)

Theorem (Chern, F., Hwang, Neininger (2015+))

We have,

Cov(Sn, Nn) ∼

{
CRn log n, if 3 ≤ m ≤ 13;

φF2(β log n)nα, if m ≥ 14,
,

where CR is a constant and F2(z) is a periodic function. Moreover,

Var(Nn) ∼ φ2CKn2.

Thus (!),

ρ(Sn, Nn)

−→ 0, if 3 ≤ m ≤ 26;

∼ F2(β logn)√
CKF1(β logn)

, if m ≥ 27.
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Size and NPL: Correlation (ii)

Periodic function of ρ(Sn, Nn) for m = 27, 54, . . . , 270.
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Pearson’s Correlation Coefficient

Pearson: for RVs X and Y

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
.

Measures linear dependence between X and Y !

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total
correlation, dual total correlation, etc.

Question: Can our counterintuitive result for ρ(Sn, Nn) be ascribed to the
weakness of Pearson’s correlation coefficient? NO!
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Size and NPL: Limit Law for 3 ≤ m ≤ 26

Theorem (Chern, F., Hwang, Neininger (2015+))

Consider
Qn = (Sn, Nn).

Then,

Cov(Qn)−1/2(Qn − E(Qn))
d−→ (N,K),

where N has a standard normal distribution.

Moreover, N and K are independent!

Thus, asymptotic independence for 3 ≤ m ≤ 26 is also observed in the
bivariate limit law!
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Size and NPL: Limit Law for m ≥ 27

Theorem (Chern, F., Hwang, Neininger (2015+))

Consider

Yn =

(
Sn − φn
nα−1

,
Nn − E(Nn)

n

)
.

Then,
`2(Yn, (<(niβΛ),K)) −→ 0,

where `2 is the minimal L2-metric and Λ is the unique solution of

W
d
=

∑
1≤r≤m

V λ−1
r W (r)

with W (r) independent copies of W .
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Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31



Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31



Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3

⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31



Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31



Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31



Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31



Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31



Fringe Balanced Binary Search Trees (FBBSTs)

Constructed like a binary search tree with every subtree of size 2t+ 1
reorganized such that the median becomes the root.

Example: t = 1 and input sequence 3, 1, 2

3 ⇒
3

1

⇒

3

1

2

⇒
2

1 3

Sn = number of nodes with subtrees of size at least 2t+ 1.

Tn = root-distances of nodes with subtrees of size at least 2t+ 1.

Michael Fuchs (NCTU) Dependencies in Log-Trees Chennai, July 10, 2015 24 / 31



FBBSTs: Means

Chern and Hwang (2001):

E(Sn) =
n+ 1

2(t+ 1)(H2t+2 −Ht+1)
− 1 +O(nαt−1),

where αt is the real part of the second largest zero of

Λt(z) = (z + t) · · · (z + 2t)− 2(2t+ 1)!

t!
.

With the tools from Chern and Hwang (2001):

E(Tn) =
n log n

H2t+2 −Ht+1
+ ctn+ o(n),

where ct is an explicitly computable constant.
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FBBSTs: Variances and Covariance

Theorem (Chern, F., Hwang, Neininger (2015+))

We have,

Var(Sn) ∼

{
DSn, if 1 ≤ t ≤ 58;

G1(βt log n)n2αt−2, if t ≥ 59,

Cov(Sn, Tn) ∼

{
DRn, if 1 ≤ t ≤ 28;

G2(βt log n)nαt , if t ≥ 29,

Var(Tn) ∼ DTn
2,

where DS , DR, DT are constants and G1(z), G2(z) are periodic functions.
Moreover, λt = αt + iβt is the second largest root of Λt(z).
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FBBSTs: Limit Law for 1 ≤ t ≤ 58

Theorem (Chern, F., Hwang, Neininger (2015+))

For Xn = (Sn, Tn), we have

Cov(Xn)−1/2(Xn − E(Xn))
d−→ (N,T ),

with N,T independent, where N has a standard normal distribution and T
is the unique solution of

X
d
= V X(1) + (1− V )X(2) +D

−1/2
X

+
1

D
1/2
X (H2t+2 −Ht+1)

(V log V + (1− V ) log(1− V )),

where X(i) are independent copies of X and V is the median of 2t+ 1
i.i.d. uniform RVs.
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FBBSTs: Limit Law for t ≥ 59

Theorem (Chern, F., Hwang, Neininger (2015+))

Consider

Zn =

(
Sn − n/((t+ 1)(H2t+2 −Ht+1))

nαt−1
,
Tn − E(Tn)

n

)
.

Then,
`2(Zn, (<(niβΛ), T )) −→ 0,

where Λ is the unique solution of

W
d
= V λtW (1) + (1− V )λtW (2)

with W (i) independent copies of W .
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Median-of-2t+ 1 Quicksort

Invented by T. Hoare in 1960.

One of the most important algorithm in computer science.

Example: t = 0 and input sequence 3, 1, 5, 6, 2, 4.

(i) Choose first key (3) as pivot element.

(ii) Split the remaining keys into two sequences, one containing all keys
smaller than the pivot (1, 2) and the other containing all keys larger
than the pivot (5, 6, 4).

(iii) Recursively continue with the subsequences.

Median of 2t+ 1 keys as pivot −→ Median-of-2t+ 1 Quicksort
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Comparisons and Partitioning Stages

Consider quicksort on a random permutation of length n.

Cn = number of key comparison.

Pn = number of recursive calls (=partitioning stages).

Median-of-2t+ 1 Quicksort ←→ FBBSTs

Theorem (Chern, F., Hwang, Neininger (2015+))

For 0 ≤ t ≤ 58, we have

ρ(Cn, Pn)→ 0.

For t ≥ 59, we have that Cn and Pn are asymptotically dependent.
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Summary and Open Questions

We studied dependencies between shape parameters in random m-ary
search trees and discovered further phase changes.

We proved similar results for variants of m-ary search trees such as
fringe balanced binary search trees and quadtrees.

Our result for the correlation are surprising and counterintuitive.

Heuristic explanation of our results?

Similar surprises for digital trees?

How about random
√
n-trees?
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