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What is a Phylogenetic Tree (PT)?

X . . . a �nite set.

Phylogenetic tree: rooted, binary, non-plane tree with leaves labeled by X .
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Phylogenetics
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Yule-Harding Model

Ranking of phylogenetic tree t :

Increasing labeling of internal nodes.

Yule-Harding Model:

Phylogenetic tree t of size n is sampled with probability proportional

to the number of rankings of t .

Thus, higher probability is assigned to more �balanced" trees.

Probability of t under Yule-Harding model:

P(t ) = 2n−1

n!
∏n

r=3(r −1)dr (t )
,

where dr (t ) is the number of nodes of r with r descendant leaves.
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Sanderson's work

De�nition

The most recent common ancestor (MRCA) of k leaves of a PT is the root

of the leaf-induced subtree of this set of leaves.

Question: How many leaves have to be sampled in a large tree such that

the MRCA is the root?

Theorem (Sanderson; 1996)

Let k leaves be randomly sampled from a random PT of size n under the

Yule-Harding model. Then, as n →∞,

P(MRCA= root) ∼ 1− 2

k +1
.

E.g. with k = 40, the probability equals ≈ 0.9512 · · · .
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Aldous β-splitting Model (i)

Let f be probability density on [0,1] which is symmetric (i.e.

f (x) = f (1−x))

Throw n balls uniformly at random into [0,1].

Split [0,1] into two subintervals according to f ; if one subinterval

contains no ball repeat.

Recursively continue with the subintervals, where a subinterval [a,b] is
split at a +X (b −a) with X having distribution f .

Stop when a subinterval contains only one ball.

−→ This gives a probability distribution on PTs of size n.
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Aldous β-splitting Model (ii)

T . . . random PT.

Choose a β-distribution (β>−1):

f (x) = Γ(2β+2)

Γ2(β+1)
xβ(1−x)β, x ∈ [0,1].

Let πn,i be the probability that left subtree has size i .

Then,

πn,i = 1

πn(β)

Γ(β+ i +1)Γ(β+n − i +1)

i !(n − i )!
, (1 ≤ i ≤ n −1),

where πn(β) is a suitable constant.

Note that the above expression makes also sense for −2 <β≤−1.
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Special Cases

β= 0: Yule-Harding model:

πn,i = 1

n −1
, 1 ≤ i ≤ n −1.

β=−3/2: Uniform or PDA model:

πn,i = Ci−1Cn−i−1

Cn−1
, (1 ≤ i ≤ n −1),

where Cn = (2n
n

)
/(n +1) are the Catalan numbers.

β=−1: with Hn the harmonic numbers:

πn,i = n

2Hn−1
· 1

i (n − i )
, (1 ≤ i ≤ n −1).

This model seems to have the best match with �real" trees.
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Extensions of Sanderson's Result (i)

Dn,k . . . depth of MRCA of a random sample of k leaves of a random PT.

Theorem (F. & Steel; 2025+)

(i) For β=−1:

P(Dn,k = 0) = Hk−1

Hn−1
,

where Hm denotes the m-th harmonic number.

(ii) For β ̸= −1:

P(Dn,k = 0) = 1− 2(β+1) · · · (β+k)

k !
(n

k

) ×
(n+2β+1

n−k

)− (n+β
n−k

)(n+2β+1
n

)−2
(n+β

n

) .

Thus, limn→∞P(Dn,k = 0) = 0 i� −2 <β≤−1.
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Extensions of Sanderson's Result (ii)

Corollary (F. & Steel; 2025+)

(i) For β>−1: limn→∞P(Dn,k = 0) = 1− (β+2)···(β+k)
(2β+3)···(2β+k+1) .

(ii) For β=−1: limn→∞P(Dn,k = 0) =α if k ∼ nα.

(iii) For −2 <β<−1:

lim
n→∞P(Dn,k = 0) =

{
c−β−1, if k ∼ cn;

0, if k = o(n).

n 10 102 103 104 105 106

β= 0 8 29 38 39 39 39

β=−1 9 78 688 6131 54635 486930

β=−3/2 10 91 903 9026 90251 902501

Figure: Values of k such that P(Dn,k = 0) ≥ 0.95.
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Limit Laws for Dn,k (i)

Question: How about limit laws for Dn,k?

Theorem (F. & Steel; 2025+)

As n →∞,

Dn,k
d−→Gk ,

where Gk is geometric with success probability 1−q(β,k), where

q(β,k) = (β+2) · · · (β+k)

(2β+3) · · · (2β+k +1)
.

Proof. By induction on r ,

P(Dn,k ≥ r ) = q(β,k)r ,

where one uses that with high probability no subtrees of the root is small.

Michael Fuchs (NCCU) Depth of MRCA August 4th, 2025 11 / 22



Limit Laws for Dn,k (i)

Question: How about limit laws for Dn,k?

Theorem (F. & Steel; 2025+)

As n →∞,

Dn,k
d−→Gk ,

where Gk is geometric with success probability 1−q(β,k), where

q(β,k) = (β+2) · · · (β+k)

(2β+3) · · · (2β+k +1)
.

Proof. By induction on r ,

P(Dn,k ≥ r ) = q(β,k)r ,

where one uses that with high probability no subtrees of the root is small.

Michael Fuchs (NCCU) Depth of MRCA August 4th, 2025 11 / 22



Limit Laws for Dn,k (i)

Question: How about limit laws for Dn,k?

Theorem (F. & Steel; 2025+)

As n →∞,

Dn,k
d−→Gk ,

where Gk is geometric with success probability 1−q(β,k), where

q(β,k) = (β+2) · · · (β+k)

(2β+3) · · · (2β+k +1)
.

Proof. By induction on r ,

P(Dn,k ≥ r ) = q(β,k)r ,

where one uses that with high probability no subtrees of the root is small.

Michael Fuchs (NCCU) Depth of MRCA August 4th, 2025 11 / 22



Limit Laws for Dn,k (ii)

Theorem (F. & Steel; 2025+)

(i) For β=−1,
Hk−1Dn,k

logn
d−→ Exp(1),

where Exp(1) is the standard exponential distribution.

(ii) For β=−3/2,
Dn,kp

n
d−→ Dk ,

where Dk has the three-parameter Mittag-Le�er distribution

ML(1/2,1/2,k −1).

Both results are proved with the method of moments.
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Sketch of Proof (i)

We have,

(Dn,k |In = j )
d=


D j ,k +1, with probability

( j
k

)
/
(n

k

)
;

Dn− j ,k +1, with probability
(n− j

k

)
/
(n

k

)
;

0, otherwise,

where In is the size of the left subtree of the root.

For β=−3/2, set

D [m](z) := ∑
n≥1

Cn−1

(
n

k

)
E(Dm

n,k )zn .

Then,

D [m](z) =
m∑
ℓ=1

(
m

ℓ

)
D [m−ℓ](z)((1−4z)−1/2 −1).
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Sketch of Proof (ii)

Proposition

As z → 1/4,

D [m](z) ∼ m!Ck−14−k

(1−4z)k+(m−1)/2
.

Corollary

As n →∞,

E(Dm
n,k ) ∼ m!Ck−141−k k !

p
π

Γ(k + (m −1)/2)
nm/2.

Remark: The sequence
m!Ck−141−k k !

p
π

Γ(k + (m −1)/2)

is the (unique) moment sequence of ML(1/2,1/2,k −1).
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Sketch of Proof (iii)

For β=−1, all moments of Dn,k satisfy the recurrence

an = 1

Hn−1

n−1∑
j=1

a j

n − j
+bn .

This recurrence was recently studied in:

D. Aldous and B. Pittel (2025). The critical beta-splitting random tree I:

Heights and related results, Ann. Appl. Probab. 35(1): 158�195.

Proposition

Let t ∈N and s ∈Z.
(i) If bn =O(nt logs n), then an =O(nt logs+1 n).

(ii) If bn = cnt logs n, then an ∼ cnt logs+1 n/Ht .
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Sketch of the Proof (iv)

Let

A[m]
n,k := (n −1)(k−1)E(Dm

n,k ).

Then,

A[m]
n,k = 1

Hn−1

n−1∑
j=1

A[m]
j ,k

n − j
+ 1

Hn−1

m−1∑
ℓ=0

(
m

ℓ

)
n−1∑
j=1

A[ℓ]
j ,k

n − j
.

Thus,

bn := 1

Hn−1

m−1∑
ℓ=0

(
m

ℓ

)
n−1∑
j=1

A[ℓ]
j ,k

n − j
.

E.g., for m = 1:

bn = 1

Hn−1

n−1∑
j=1

( j −1)(k−1)

n − j
= (n −1)(k−1)

(
1− Hk−1

Hn−1

)
and thus,

E(Dn,k ) ∼ logn/Hk−1.
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Sketch of Proof (v)

Using �moment pumping", one obtains the following.

Proposition

Set

A[m]
n,k := (n −1)(k−1)E(Dm

n,k ).

Then, as n →∞,

A[m]
n,k ∼ m!

H m
k−1

nk−1 logm n.

Thus, as n →∞,

E(Dm
n,k ) ∼ m!

H m
k−1

logm n

which implies the claimed limit law.
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A Conjecture

Conjecture

For −2 <β<−1,
Dn,k

n−β−1

d−→ Dk ,

where Dk is uniquely characterized by the moment sequence

cm = m!
m∏

j=1
e(β,k, j )

and

e(β,k,m) := Γ((−β−1)m +β+k +1)

Γ((−β−1)m +2β+k +2)
− Γ(β+2)

Γ(2β+3)
.

Remark: Relatively little is known so far for the range −2 <β<−1.
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Random Sample of Species (i)

Before, we randomly picked a set of k species.

Now, assume that each species is included in the set of species with

probability p.

Dn . . . depth of MRCA of the random set of species.

Lemma

We have,

P(Dn = 0) = 1−2E(q In )+qn

1−qn ,

where In is the size of the left subtree.

Let p =λ/n.
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Random Sample of Species (ii)

Theorem (F. & Steel; 2025+)

(i) For β>−1,

P(Dn = 0) ∼ 1−2Γ(2β+2)
∫ 1

0 e−λx xβ(1−x)βdx/Γ(β+1)2 +e−λ

1−e−λ
.

(ii) For β=−1,

P(Dn = 0) ∼ E1(λ)+ logλ+γ−e−λ(Ei(λ)−λ−γ)

(1−e−λ)Hn−1
.

(iii) For −2 <β<−1,

P(Dn = 0) ∼ cnβ+1

Γ(β+1)(1−e−λ)
.
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Random Sample of Species (iii)

Corollary (F. & Steel; 2025+)

(i) For β>−1,

1−2Γ(2β+2)
∫ 1

0 e−λx xβ(1−x)βdx/Γ(β+1)2 +e−λ

1−e−λ
∼ 1− 2Γ(2β+2)

λβ+1Γ(β+1)
.

(ii) For β=−1,

E1(λ)+ logλ+γ−e−λ(Ei(λ)−λ−γ)

(1−e−λ)Hn−1
∼ logλ

Hn−1
.

(iii) For −2 <β<−1,

cnβ+1

Γ(β+1)(1−e−λ)
∼

(
λ

n

)−β−1

.
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Reference

M. Fuchs and M. Steel. Predicting the depth of the most recent common

ancestor of a random sample of k species: the impact of phylogenetic tree

shape, J. Math. Biol., in press.

Thanks for the attention!
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