The Depth of the Most Recent Common Ancestor of a Random Sample of Species (joint with Mike Steel)

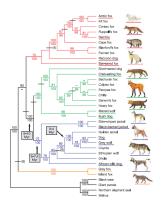
Michael Fuchs

Department of Mathematical Sciences Chengchi University Taipei, Taiwan

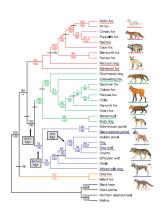
August 4th, 2025

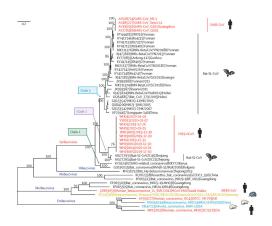
 $X \dots$ a finite set.

$X \dots$ a finite set.

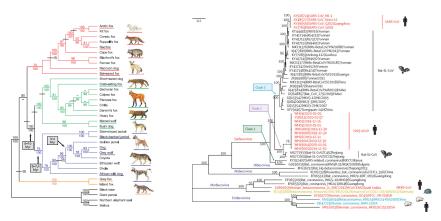


$X \dots$ a finite set.





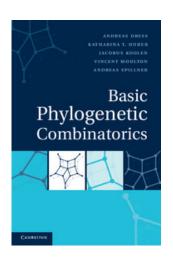
$X \dots$ a finite set.

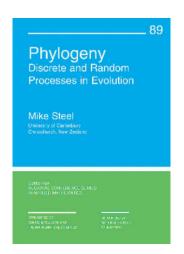


Phylogenetic tree: rooted, binary, non-plane tree with leaves labeled by X.

4 D > 4 B > 4 B > 4 B >

Phylogenetics





• Ranking of phylogenetic tree t:

Increasing labeling of internal nodes.

Ranking of phylogenetic tree t:

Increasing labeling of internal nodes.

Yule-Harding Model:

Phylogenetic tree t of size n is sampled with probability proportional to the number of rankings of t.

Ranking of phylogenetic tree t:

Increasing labeling of internal nodes.

Yule-Harding Model:

Phylogenetic tree t of size n is sampled with probability proportional to the number of rankings of t.

Thus, higher probability is assigned to more "balanced" trees.

• Ranking of phylogenetic tree t:

Increasing labeling of internal nodes.

• Yule-Harding Model:

Phylogenetic tree t of size n is sampled with probability proportional to the number of rankings of t.

Thus, higher probability is assigned to more "balanced" trees.

• Probability of t under Yule-Harding model:

$$\mathbb{P}(t) = \frac{2^{n-1}}{n! \prod_{r=3}^{n} (r-1)^{d_r(t)}},$$

where $d_r(t)$ is the number of nodes of r with r descendant leaves.

Definition

The most recent common ancestor (MRCA) of k leaves of a PT is the root of the leaf-induced subtree of this set of leaves.

Definition

The most recent common ancestor (MRCA) of k leaves of a PT is the root of the leaf-induced subtree of this set of leaves.

Question: How many leaves have to be sampled in a large tree such that the MRCA is the root?

Definition

The most recent common ancestor (MRCA) of k leaves of a PT is the root of the leaf-induced subtree of this set of leaves.

Question: How many leaves have to be sampled in a large tree such that the MRCA is the root?

Theorem (Sanderson; 1996)

Let k leaves be randomly sampled from a random PT of size n under the Yule-Harding model. Then, as $n \to \infty$,

$$\mathbb{P}(MRCA = root) \sim 1 - \frac{2}{k+1}.$$

Definition

The most recent common ancestor (MRCA) of k leaves of a PT is the root of the leaf-induced subtree of this set of leaves.

Question: How many leaves have to be sampled in a large tree such that the MRCA is the root?

Theorem (Sanderson; 1996)

Let k leaves be randomly sampled from a random PT of size n under the Yule-Harding model. Then, as $n \to \infty$,

$$\mathbb{P}(MRCA = root) \sim 1 - \frac{2}{k+1}.$$

E.g. with k = 40, the probability equals $\approx 0.9512 \cdots$.

• Let f be probability density on [0,1] which is symmetric (i.e. f(x) = f(1-x))

- Let f be probability density on [0,1] which is symmetric (i.e. f(x) = f(1-x))
- Throw n balls uniformly at random into [0,1].

- Let f be probability density on [0,1] which is symmetric (i.e. f(x) = f(1-x))
- Throw n balls uniformly at random into [0,1].
- Split [0,1] into two subintervals according to f; if one subinterval contains no ball repeat.

- Let f be probability density on [0,1] which is symmetric (i.e. f(x) = f(1-x))
- Throw n balls uniformly at random into [0,1].
- Split [0,1] into two subintervals according to f; if one subinterval contains no ball repeat.
- Recursively continue with the subintervals, where a subinterval [a,b] is split at a+X(b-a) with X having distribution f.

- Let f be probability density on [0,1] which is symmetric (i.e. f(x) = f(1-x))
- Throw n balls uniformly at random into [0,1].
- Split [0,1] into two subintervals according to f; if one subinterval contains no ball repeat.
- Recursively continue with the subintervals, where a subinterval [a,b] is split at a+X(b-a) with X having distribution f.
- Stop when a subinterval contains only one ball.

- Let f be probability density on [0,1] which is symmetric (i.e. f(x) = f(1-x))
- Throw n balls uniformly at random into [0,1].
- Split [0,1] into two subintervals according to f; if one subinterval contains no ball repeat.
- Recursively continue with the subintervals, where a subinterval [a,b] is split at a+X(b-a) with X having distribution f.
- Stop when a subinterval contains only one ball.
- \longrightarrow This gives a probability distribution on PTs of size n.

 $T \dots \mathsf{random} \; \mathsf{PT}.$

 $T \dots \mathsf{random} \; \mathsf{PT}.$

Choose a β -distribution ($\beta > -1$):

$$f(x) = \frac{\Gamma(2\beta + 2)}{\Gamma^2(\beta + 1)} x^{\beta} (1 - x)^{\beta}, \qquad x \in [0, 1].$$

 $T \dots \mathsf{random} \; \mathsf{PT}.$

Choose a β -distribution ($\beta > -1$):

$$f(x) = \frac{\Gamma(2\beta + 2)}{\Gamma^2(\beta + 1)} x^{\beta} (1 - x)^{\beta}, \qquad x \in [0, 1].$$

Let $\pi_{n,i}$ be the probability that left subtree has size i.

T ... random PT.

Choose a β -distribution ($\beta > -1$):

$$f(x) = \frac{\Gamma(2\beta + 2)}{\Gamma^2(\beta + 1)} x^{\beta} (1 - x)^{\beta}, \qquad x \in [0, 1].$$

Let $\pi_{n,i}$ be the probability that left subtree has size i.

Then,

$$\pi_{n,i} = \frac{1}{\pi_n(\beta)} \frac{\Gamma(\beta + i + 1)\Gamma(\beta + n - i + 1)}{i!(n - i)!}, \qquad (1 \le i \le n - 1),$$

where $\pi_n(\beta)$ is a suitable constant.

T ... random PT.

Choose a β -distribution ($\beta > -1$):

$$f(x) = \frac{\Gamma(2\beta + 2)}{\Gamma^2(\beta + 1)} x^{\beta} (1 - x)^{\beta}, \qquad x \in [0, 1].$$

Let $\pi_{n,i}$ be the probability that left subtree has size i.

Then,

$$\pi_{n,i} = \frac{1}{\pi_n(\beta)} \frac{\Gamma(\beta+i+1)\Gamma(\beta+n-i+1)}{i!(n-i)!}, \qquad (1 \le i \le n-1),$$

where $\pi_n(\beta)$ is a suitable constant.

Note that the above expression makes also sense for $-2 < \beta \le -1$.

Special Cases

• $\beta = 0$: Yule-Harding model:

$$\pi_{n,i} = \frac{1}{n-1}, \quad 1 \le i \le n-1.$$

Special Cases

• $\beta = 0$: Yule-Harding model:

$$\pi_{n,i} = \frac{1}{n-1}, \qquad 1 \le i \le n-1.$$

• $\beta = -3/2$: Uniform or PDA model:

$$\pi_{n,i} = \frac{C_{i-1}C_{n-i-1}}{C_{n-1}}, \qquad (1 \le i \le n-1),$$

where $C_n = {2n \choose n}/(n+1)$ are the Catalan numbers.

Special Cases

• $\beta = 0$: Yule-Harding model:

$$\pi_{n,i} = \frac{1}{n-1}, \qquad 1 \le i \le n-1.$$

• $\beta = -3/2$: Uniform or PDA model:

$$\pi_{n,i} = \frac{C_{i-1}C_{n-i-1}}{C_{n-1}}, \qquad (1 \le i \le n-1),$$

where $C_n = {2n \choose n}/(n+1)$ are the Catalan numbers.

• $\beta = -1$: with H_n the harmonic numbers:

$$\pi_{n,i} = \frac{n}{2H_{n-1}} \cdot \frac{1}{i(n-i)}, \qquad (1 \le i \le n-1).$$

This model seems to have the best match with "real" trees.

Extensions of Sanderson's Result (i)

 $D_{n,k}$... depth of MRCA of a random sample of k leaves of a random PT.

Extensions of Sanderson's Result (i)

 $D_{n,k}$... depth of MRCA of a random sample of k leaves of a random PT.

Theorem (F. & Steel; 2025+)

(i) For $\beta = -1$:

$$\mathbb{P}(D_{n,k} = 0) = \frac{H_{k-1}}{H_{n-1}},$$

where H_m denotes the m-th harmonic number.

(ii) For $\beta \neq -1$:

$$\mathbb{P}(D_{n,k} = 0) = 1 - \frac{2(\beta+1)\cdots(\beta+k)}{k!\binom{n}{k}} \times \frac{\binom{n+2\beta+1}{n-k} - \binom{n+\beta}{n-k}}{\binom{n+2\beta+1}{n} - 2\binom{n+\beta}{n}}.$$

Extensions of Sanderson's Result (i)

 $D_{n,k}$... depth of MRCA of a random sample of k leaves of a random PT.

Theorem (F. & Steel; 2025+)

(i) For $\beta = -1$:

$$\mathbb{P}(D_{n,k} = 0) = \frac{H_{k-1}}{H_{n-1}},$$

where H_m denotes the m-th harmonic number.

(ii) For $\beta \neq -1$:

$$\mathbb{P}(D_{n,k} = 0) = 1 - \frac{2(\beta+1)\cdots(\beta+k)}{k!\binom{n}{k}} \times \frac{\binom{n+2\beta+1}{n-k} - \binom{n+\beta}{n-k}}{\binom{n+2\beta+1}{n} - 2\binom{n+\beta}{n}}.$$

Thus, $\lim_{n\to\infty} \mathbb{P}(D_{n,k}=0)=0$ iff $-2<\beta\leq -1$.

Extensions of Sanderson's Result (ii)

Corollary (F. & Steel; 2025+)

- (i) For $\beta > -1$: $\lim_{n \to \infty} \mathbb{P}(D_{n,k} = 0) = 1 \frac{(\beta + 2) \cdots (\beta + k)}{(2\beta + 3) \cdots (2\beta + k + 1)}$.
- (ii) For $\beta = -1$: $\lim_{n\to\infty} \mathbb{P}(D_{n,k} = 0) = \alpha$ if $k \sim n^{\alpha}$.
- (iii) For $-2 < \beta < -1$:

$$\lim_{n\to\infty} \mathbb{P}(D_{n,k}=0) = \begin{cases} c^{-\beta-1}, & \text{if } k \sim cn; \\ 0, & \text{if } k = o(n). \end{cases}$$

Extensions of Sanderson's Result (ii)

Corollary (F. & Steel: 2025+)

(i) For
$$\beta > -1$$
: $\lim_{n \to \infty} \mathbb{P}(D_{n,k} = 0) = 1 - \frac{(\beta + 2) \cdots (\beta + k)}{(2\beta + 3) \cdots (2\beta + k + 1)}$.

(ii) For
$$\beta = -1$$
: $\lim_{n \to \infty} \mathbb{P}(D_{n,k} = 0) = \alpha$ if $k \sim n^{\alpha}$.

(iii) For $-2 < \beta < -1$:

$$\lim_{n\to\infty} \mathbb{P}(D_{n,k}=0) = \begin{cases} c^{-\beta-1}, & \text{if } k \sim cn; \\ 0, & \text{if } k = o(n). \end{cases}$$

n	10	10^2	10^{3}	10^{4}	10^{5}	10^{6}
$\beta = 0$	8	29	38	39	39	39
$\beta = -1$	9	78	688	6131	54635	486930
$\beta = -3/2$	10	91	903	9026	90251	902501

Figure: Values of k such that $\mathbb{P}(D_{n,k}=0) \geq 0.95$.

Limit Laws for $D_{n,k}$ (i)

Question: How about limit laws for $D_{n,k}$?

Limit Laws for $D_{n,k}$ (i)

Question: How about limit laws for $D_{n,k}$?

Theorem (F. & Steel; 2025+)

As $n \to \infty$,

$$D_{n,k} \stackrel{d}{\longrightarrow} G_k,$$

where G_k is geometric with success probability $1 - q(\beta, k)$, where

$$q(\beta, k) = \frac{(\beta+2)\cdots(\beta+k)}{(2\beta+3)\cdots(2\beta+k+1)}.$$

Limit Laws for $D_{n,k}$ (i)

Question: How about limit laws for $D_{n,k}$?

Theorem (F. & Steel; 2025+)

As $n \to \infty$,

$$D_{n,k} \stackrel{d}{\longrightarrow} G_k,$$

where G_k is geometric with success probability $1 - q(\beta, k)$, where

$$q(\beta, k) = \frac{(\beta+2)\cdots(\beta+k)}{(2\beta+3)\cdots(2\beta+k+1)}.$$

Proof. By induction on r,

$$\mathbb{P}(D_{n,k} \ge r) = q(\beta, k)^r,$$

where one uses that with high probability no subtrees of the root is small.

Limit Laws for $D_{n,k}$ (ii)

Theorem (F. & Steel; 2025+)

(i) For $\beta = -1$,

$$\frac{H_{k-1}D_{n,k}}{\log n} \xrightarrow{d} \operatorname{Exp}(1),$$

where Exp(1) is the standard exponential distribution.

(ii) For $\beta = -3/2$,

$$\frac{D_{n,k}}{\sqrt{n}} \stackrel{d}{\longrightarrow} D_k,$$

where D_k has the three-parameter Mittag-Leffler distribution ML(1/2,1/2,k-1).

Limit Laws for $D_{n,k}$ (ii)

Theorem (F. & Steel; 2025+)

(i) For $\beta = -1$,

$$\frac{H_{k-1}D_{n,k}}{\log n} \xrightarrow{d} \operatorname{Exp}(1),$$

where Exp(1) is the standard exponential distribution.

(ii) For $\beta = -3/2$,

$$\frac{D_{n,k}}{\sqrt{n}} \stackrel{d}{\longrightarrow} D_k,$$

where D_k has the three-parameter Mittag-Leffler distribution ML(1/2,1/2,k-1).

Both results are proved with the method of moments.

Sketch of Proof (i)

We have,

$$(D_{n,k}|I_n=j) \stackrel{d}{=} \begin{cases} D_{j,k}+1, & \text{with probability } \binom{j}{k}/\binom{n}{k}; \\ D_{n-j,k}+1, & \text{with probability } \binom{n-j}{k}/\binom{n}{k}; \\ 0, & \text{otherwise,} \end{cases}$$

where I_n is the size of the left subtree of the root.

Sketch of Proof (i)

We have,

$$(D_{n,k}|I_n=j) \stackrel{d}{=} \begin{cases} D_{j,k}+1, & \text{with probability } \binom{j}{k}/\binom{n}{k}; \\ D_{n-j,k}+1, & \text{with probability } \binom{n-j}{k}/\binom{n}{k}; \\ 0, & \text{otherwise,} \end{cases}$$

where I_n is the size of the left subtree of the root.

For $\beta = -3/2$, set

$$D^{[m]}(z) := \sum_{n \ge 1} C_{n-1} \binom{n}{k} \mathbb{E}(D_{n,k}^m) z^n.$$

Sketch of Proof (i)

We have,

$$(D_{n,k}|I_n=j) \stackrel{d}{=} \begin{cases} D_{j,k}+1, & \text{with probability } \binom{j}{k}/\binom{n}{k}; \\ D_{n-j,k}+1, & \text{with probability } \binom{n-j}{k}/\binom{n}{k}; \\ 0, & \text{otherwise,} \end{cases}$$

where I_n is the size of the left subtree of the root.

For $\beta = -3/2$, set

$$D^{[m]}(z) := \sum_{n\geq 1} C_{n-1} \binom{n}{k} \mathbb{E}(D_{n,k}^m) z^n.$$

Then,

$$D^{[m]}(z) = \sum_{\ell=1}^{m} {m \choose \ell} D^{[m-\ell]}(z) ((1-4z)^{-1/2} - 1).$$

Sketch of Proof (ii)

Proposition

As $z \rightarrow 1/4$,

$$D^{[m]}(z) \sim \frac{m!C_{k-1}4^{-k}}{(1-4z)^{k+(m-1)/2}}.$$

Sketch of Proof (ii)

Proposition

As $z \rightarrow 1/4$,

$$D^{[m]}(z) \sim \frac{m! C_{k-1} 4^{-k}}{(1-4z)^{k+(m-1)/2}}.$$

Corollary

As
$$n \to \infty$$
,

$$\mathbb{E}(D_{n,k}^m) \sim \frac{m! C_{k-1} 4^{1-k} k! \sqrt{\pi}}{\Gamma(k + (m-1)/2)} n^{m/2}.$$

Sketch of Proof (ii)

Proposition

As $z \rightarrow 1/4$,

$$D^{[m]}(z) \sim \frac{m!C_{k-1}4^{-k}}{(1-4z)^{k+(m-1)/2}}.$$

Corollary

As $n \to \infty$,

$$\mathbb{E}(D_{n,k}^m) \sim \frac{m! C_{k-1} 4^{1-k} k! \sqrt{\pi}}{\Gamma(k + (m-1)/2)} n^{m/2}.$$

Remark: The sequence

$$\frac{m!C_{k-1}4^{1-k}k!\sqrt{\pi}}{\Gamma(k+(m-1)/2)}$$

is the (unique) moment sequence of ML(1/2, 1/2, k-1).

Sketch of Proof (iii)

For $\beta = -1$, all moments of $D_{n,k}$ satisfy the recurrence

$$a_n = \frac{1}{H_{n-1}} \sum_{j=1}^{n-1} \frac{a_j}{n-j} + b_n.$$

Sketch of Proof (iii)

For $\beta = -1$, all moments of $D_{n,k}$ satisfy the recurrence

$$a_n = \frac{1}{H_{n-1}} \sum_{j=1}^{n-1} \frac{a_j}{n-j} + b_n.$$

This recurrence was recently studied in:

D. Aldous and B. Pittel (2025). The critical beta-splitting random tree I: Heights and related results, Ann. Appl. Probab. 35(1): 158–195.

Sketch of Proof (iii)

For $\beta = -1$, all moments of $D_{n,k}$ satisfy the recurrence

$$a_n = \frac{1}{H_{n-1}} \sum_{j=1}^{n-1} \frac{a_j}{n-j} + b_n.$$

This recurrence was recently studied in:

D. Aldous and B. Pittel (2025). The critical beta-splitting random tree I: Heights and related results, Ann. Appl. Probab. 35(1): 158–195.

Proposition

Let $t \in \mathbb{N}$ and $s \in \mathbb{Z}$.

- (i) If $b_n = O(n^t \log^s n)$, then $a_n = O(n^t \log^{s+1} n)$.
- (ii) If $b_n = cn^t \log^s n$, then $a_n \sim cn^t \log^{s+1} n/H_t$.

Let

$$A_{n,k}^{[m]}:=(n-1)_{(k-1)}\mathbb{E}(D_{n,k}^m).$$

Let

$$A_{n,k}^{[m]} := (n-1)_{(k-1)} \mathbb{E}(D_{n,k}^m).$$

Then,

$$A_{n,k}^{[m]} = \frac{1}{H_{n-1}} \sum_{j=1}^{n-1} \frac{A_{j,k}^{[m]}}{n-j} + \frac{1}{H_{n-1}} \sum_{\ell=0}^{m-1} \binom{m}{\ell} \sum_{j=1}^{n-1} \frac{A_{j,k}^{[\ell]}}{n-j}.$$

Let

$$A_{n,k}^{[m]} := (n-1)_{(k-1)} \mathbb{E}(D_{n,k}^m).$$

Then,

$$A_{n,k}^{[m]} = \frac{1}{H_{n-1}} \sum_{j=1}^{n-1} \frac{A_{j,k}^{[m]}}{n-j} + \frac{1}{H_{n-1}} \sum_{\ell=0}^{m-1} \binom{m}{\ell} \sum_{j=1}^{n-1} \frac{A_{j,k}^{[\ell]}}{n-j}.$$

Thus,

$$b_n := \frac{1}{H_{n-1}} \sum_{\ell=0}^{m-1} {m \choose \ell} \sum_{j=1}^{n-1} \frac{A_{j,k}^{[\ell]}}{n-j}.$$

Let

$$A_{n,k}^{[m]} := (n-1)_{(k-1)} \mathbb{E}(D_{n,k}^m).$$

Then,

$$A_{n,k}^{[m]} = \frac{1}{H_{n-1}} \sum_{j=1}^{n-1} \frac{A_{j,k}^{[m]}}{n-j} + \frac{1}{H_{n-1}} \sum_{\ell=0}^{m-1} \binom{m}{\ell} \sum_{j=1}^{n-1} \frac{A_{j,k}^{[\ell]}}{n-j}.$$

Thus,

$$b_n := \frac{1}{H_{n-1}} \sum_{\ell=0}^{m-1} {m \choose \ell} \sum_{j=1}^{n-1} \frac{A_{j,k}^{\lfloor \ell \rfloor}}{n-j}.$$

E.g., for m=1:

$$b_n = \frac{1}{H_{n-1}} \sum_{j=1}^{n-1} \frac{(j-1)_{(k-1)}}{n-j} = (n-1)_{(k-1)} \left(1 - \frac{H_{k-1}}{H_{n-1}}\right)$$

and thus,

$$\mathbb{E}(D_{n,k}) \sim \log n/H_{k-1}.$$

Sketch of Proof (v)

Using "moment pumping", one obtains the following.

Proposition

Set

$$A_{n,k}^{[m]} := (n-1)_{(k-1)} \mathbb{E}(D_{n,k}^m).$$

Then, as $n \to \infty$,

$$A_{n,k}^{[m]} \sim \frac{m!}{H_{k-1}^m} n^{k-1} \log^m n.$$

Sketch of Proof (v)

Using "moment pumping", one obtains the following.

Proposition

Set

$$A_{n,k}^{[m]} := (n-1)_{(k-1)} \mathbb{E}(D_{n,k}^m).$$

Then, as $n \to \infty$,

$$A_{n,k}^{[m]} \sim \frac{m!}{H_{k-1}^m} n^{k-1} \log^m n.$$

Thus, as $n \to \infty$,

$$\mathbb{E}(D_{n,k}^m) \sim \frac{m!}{H_{k-1}^m} \log^m n$$

which implies the claimed limit law.

A Conjecture

Conjecture

For
$$-2 < \beta < -1$$
,

$$\frac{D_{n,k}}{n^{-\beta-1}} \stackrel{d}{\longrightarrow} D_k,$$

where D_k is uniquely characterized by the moment sequence

$$c_m = m! \prod_{j=1}^m e(\beta, k, j)$$

and

$$e(\beta,k,m) := \frac{\Gamma((-\beta-1)m+\beta+k+1)}{\Gamma((-\beta-1)m+2\beta+k+2)} - \frac{\Gamma(\beta+2)}{\Gamma(2\beta+3)}.$$

A Conjecture

Conjecture

For $-2 < \beta < -1$,

$$\frac{D_{n,k}}{n^{-\beta-1}} \stackrel{d}{\longrightarrow} D_k,$$

where D_k is uniquely characterized by the moment sequence

$$c_m = m! \prod_{j=1}^m e(\beta, k, j)$$

and

$$e(\beta, k, m) := \frac{\Gamma((-\beta-1)m+\beta+k+1)}{\Gamma((-\beta-1)m+2\beta+k+2)} - \frac{\Gamma(\beta+2)}{\Gamma(2\beta+3)}.$$

Remark: Relatively little is known so far for the range $-2 < \beta < -1$.

4□ > 4□ > 4□ > 4□ > 4□ > □

Before, we randomly picked a set of k species.

Before, we randomly picked a set of k species.

Now, assume that each species is included in the set of species with probability p.

Before, we randomly picked a set of k species.

Now, assume that each species is included in the set of species with probability p.

 D_n ... depth of MRCA of the random set of species.

Before, we randomly picked a set of k species.

Now, assume that each species is included in the set of species with probability p.

 D_n ... depth of MRCA of the random set of species.

Lemma

We have,

$$\mathbb{P}(D_n = 0) = \frac{1 - 2\mathbb{E}(q^{I_n}) + q^n}{1 - q^n},$$

where I_n is the size of the left subtree.

Before, we randomly picked a set of k species.

Now, assume that each species is included in the set of species with probability p.

 D_n ... depth of MRCA of the random set of species.

Lemma

We have,

$$\mathbb{P}(D_n = 0) = \frac{1 - 2\mathbb{E}(q^{I_n}) + q^n}{1 - q^n},$$

where I_n is the size of the left subtree.

Let $p = \lambda/n$.

Theorem (F. & Steel; 2025+)

(i) For $\beta > -1$,

$$\mathbb{P}(D_n = 0) \sim \frac{1 - 2\Gamma(2\beta + 2) \int_0^1 e^{-\lambda x} x^{\beta} (1 - x)^{\beta} dx / \Gamma(\beta + 1)^2 + e^{-\lambda}}{1 - e^{-\lambda}}$$

(ii) For $\beta = -1$,

$$\mathbb{P}(D_n = 0) \sim \frac{E_1(\lambda) + \log \lambda + \gamma - e^{-\lambda} (\operatorname{Ei}(\lambda) - \lambda - \gamma)}{(1 - e^{-\lambda}) H_{n-1}}.$$

(iii) For $-2 < \beta < -1$,

$$\mathbb{P}(D_n=0)\sim \frac{cn^{\beta+1}}{\Gamma(\beta+1)(1-e^{-\lambda})}.$$

Corollary (F. & Steel; 2025+)

(i) For $\beta > -1$,

$$\frac{1 - 2\Gamma(2\beta + 2)\int_0^1 e^{-\lambda x} x^\beta (1 - x)^\beta \mathrm{d}x / \Gamma(\beta + 1)^2 + e^{-\lambda}}{1 - e^{-\lambda}} \sim 1 - \frac{2\Gamma(2\beta + 2)}{\lambda^{\beta + 1}\Gamma(\beta + 1)}.$$

(ii) For $\beta = -1$,

$$\frac{E_1(\lambda) + \log \lambda + \gamma - e^{-\lambda}(\mathrm{Ei}(\lambda) - \lambda - \gamma)}{(1 - e^{-\lambda})H_{n-1}} \sim \frac{\log \lambda}{H_{n-1}}.$$

(iii) For $-2 < \beta < -1$,

$$\frac{cn^{\beta+1}}{\Gamma(\beta+1)(1-e^{-\lambda})} \sim \left(\frac{\lambda}{n}\right)^{-\beta-1}.$$

Reference

M. Fuchs and M. Steel. Predicting the depth of the most recent common ancestor of a random sample of k species: the impact of phylogenetic tree shape, J. Math. Biol., in press.

Reference

M. Fuchs and M. Steel. Predicting the depth of the most recent common ancestor of a random sample of k species: the impact of phylogenetic tree shape, J. Math. Biol., in press.

Thanks for the attention!