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Abstract8

We propose the class of galled tree-child networks which is obtained as intersection of the classes of9

galled networks and tree-child networks. For the latter two classes, (asymptotic) counting results10

and stochastic results have been proved with very different methods. We show that a counting11

result for the class of galled tree-child networks follows with similar tools as used for galled networks,12

however, the result has a similar pattern as the one for tree-child networks. In addition, we also13

consider the (suitably scaled) numbers of reticulation nodes of random galled tree-child networks14

and show that they are asymptotically normal distributed. This is in contrast to the limit laws15

of the corresponding quantities for galled networks and tree-child networks which have been both16

shown to be discrete.17
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1 Introduction28

Phylogenetic networks are used to visualize, model, and analyze the ancestor relationship of29

taxa in reticulate evolution. To make them more relevant for biological applications as well as30

devise algorithms for them, many subclasses of the class of phylogenetic networks have been31

proposed; see the comprehensive survey [14]. A lot of recent research work was concerned with32

fundamental questions such as counting them and understanding the shape of a network drawn33

uniformly at random from a given class; see, e.g., [2, 3, 4, 8, 9, 11, 12, 10, 13, 15, 16]. Despite34

this, even counting results are still missing for most of the major classes of phylogenetic35

networks. Two notable exceptions are tree-child networks and galled networks for which such36

results have been proved in [11, 12]. In this work, we consider the intersection of these two37

network classes. We start with some basic definitions and then explain why we find this class38

interesting.39

First, a phylogenetic network is defined as follows.40

I Definition 1 (Phylogenetic Network). A (rooted) phylogenetic network of size n is a rooted,41

simple, directed, acyclic graph whose nodes fall into the following three (disjoint) categories:42

(a) A unique root which has indegree 0 and outdegree 1;43
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2:2 Galled Tree-Child Networks
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Figure 1 (a) A galled network which is not tree-child; (b) A tree-child network which is not
galled; (c) A galled tree-child network.

(b) Leaves which have indegree 1 and outdegree 0 and are bijectively labeled with labels from44

the set {1, . . . , n};45

(c) Internal nodes which have indegree and outdegree at least 1 and total degree at least 3.46

Moreover, a phylogenetic network is called binary if all internal nodes have either indegree 147

and outdegree 2 (tree nodes) or indegree 2 and outdegree 1 (reticulation nodes).48

I Remark 2. (i) Phylogenetic networks with all internal nodes having indegree equal to 149

are called phylogentic trees. They have been used as visualization tool in evolutionary50

biology at least since Darwin.51

(ii) If not explicitly mentioned, phylogenetic networks are always binary in the sequel.52

We next define galled networks and tree-child networks which are two of the major classes53

of phylogenetic networks. (The former has been introduced for computational reasons, the54

latter because of its biological relevance; see [14].) For the definition, we need the notion of55

a tree cycle which is a pair of edge-disjoint paths in a phylogenetic network that start at a56

common tree node and end at a common reticulation node with all other nodes being tree57

nodes.58

I Definition 3. (a) A phylogenetic network is called a tree-child network if every non-leaf59

node has at least one child which is either a tree node or a leaf.60

(b) A phylogenetic network is called a galled network if every reticulation node is in a61

(necessarily unique) tree cycle.62

I Remark 4. Note that neither the class of tree-child networks is contained in the class of63

galled networks nor vice versa; see Figure 1.64

Let TCn,k and GNn,k denote the number of tree-child networks and galled networks65

of size n with k reticulation nodes, respectively. It is not hard to see that k ≤ n − 1 for66

tree-child networks and k ≤ 2n− 2 for galled networks where both bounds are sharp; see,67

e.g., [11, 12]. Thus, the total numbers are given by:68

TCn :=
n−1∑
k=0

TCn,k and GNn :=
2n−2∑
k=0

GNn,k. (1)69
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The asymptotic growth of both of these sequences is known. First, in [11], it was proved70

that for the number of tree-child networks, as n→∞,71

TCn = Θ
(
n−2/3ea1(3n)1/3

(
12
e2

)n
n2n
)
, (2)72

where a1 is the largest root of the Airy function of the first kind. The surprise here was73

the presence of a stretched exponential in the asymptotic growth term. On the other hand,74

no stretched exponential is contained in the asymptotics of the number of galled networks.75

More precisely, it was proved in [12] that, as n→∞,76

GNn ∼
√

2e 4
√
e

4 n−1
(

8
e2

)n
n2n. (3)77

The tools used to establish (2) and (3) were very different: for (2), a bijection to a class of78

words was proved and a recurrence for these word was found which could be (asymptotically)79

analyzed with the approach from [6]; for (3), the component graph method introduced in80

[13] together with the Laplace method and a result from [1] was used.81

Another difference was the location in (1) of the terms which dominate the two sums. For82

tree-child networks, the main contribution comes from networks with k close to n− 1 (the83

maximally reticulated networks), whereas for galled networks, the main contributions comes84

from networks with k ≈ n. In fact, the limit law of the number of reticulation nodes, say Rn,85

was derived in [5, 12] for both network classes if a network of size n is sampled uniformly at86

random. More precisely, for tree-child networks, it was shown in [5] that, as n→∞,87

n− 1−Rn
d−→ Poisson(1/2),88

where d−→ denotes convergence in distribution and Poisson(λ) is a Poisson law with parameter89

λ. A similar discrete limit law was proved in [12] for galled networks. More precisely, it was90

shown that, as n→∞,91

E(Rn) = n− 3
8 + o(1)92

and that the limit law of n−Rn is not Poisson but a mixture of Poisson laws; see Theorem 293

in [12] for more details.94

Due to the above results and differences, one wonders how the intersection of the class of95

tree-child networks and galled networks behaves?96

I Definition 5 (Galled Tree-Child Network). A galled tree-child network is a network which97

is both a galled network and a tree-child network.98

Let GTCn,k denote the number of galled tree-child networks of size n with k reticulation99

nodes. We show below that again k has the sharp upper bound n− 1. (See Lemma 19 in100

Section 3.) Set:101

GTCn :=
n−1∑
k=0

GTCn,k.102

Then, this sequence has the following first-order asymptotics.103

I Theorem 6. For the number of galled tree-child networks, we have, as n→∞,104

GTCn ∼
1

2 4
√
e
n−5/4e2

√
n

(
2
e2

)n
n2n.105
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2:4 Galled Tree-Child Networks

I Remark 7. Note that the asymptotic expansion contains a stretched exponential as does106

the expansion (2) for tree-child networks, however, the proof will use the tools which were107

developed in [12] to derive (3) for galled networks.108

We next consider the number of reticulation nodes Rn of a random galled tree-child109

network which is a galled tree-child network of size n that is sampled uniformly at random110

from the set of all galled tree-child networks of size n. In contrast to tree-child networks and111

galled networks, the limit law of Rn (suitably scaled) is continuous.112

I Theorem 8. The number of reticulation nodes Rn of a random galled tree-child networks113

satisfies, as n→∞,114

Rn − E(Rn)√
Var(Rn)

d−→ N(0, 1),115

where N(0, 1) denotes the standard normal distribution. Moreover, as n→∞,116

E(Rn) = n−
√
n+ o(

√
n) and Var(Rn) ∼

√
n/2.117

The above results show that galled tree-child networks behave quite different from both118

tree-child networks and galled networks. That is one reason why we find them interesting.119

Another reason stems from a recent result which was proved in [4]. In the latter paper, the120

asymptotics of GNn,k for fixed k was derived. Let PNn,k denote the number of phylogenetic121

networks of size n and k reticulation nodes. (Note that this number is finite, whereas it122

becomes infinite when summing over k.) Then, one of the main results from [4] implies that123

for fixed k, as n→∞,124

PNn,k ∼ TCn,k ∼ GNn,k ∼
2k−1√2
k!

(
2
e

)n
nn+2k−1. (4)125

(The first two asymptotic equivalences were proved in [10, 15].) That TCn,k and GNn,k have126

the same first-order asymptotics for fixed k was a surprise since the classes of tree-child127

networks and galled networks are quite different, e.g., neither contains the other; see Remark 4.128

However, the above result can be explained via the class of galled tree-child networks as will129

be seen in Section 3 below.130

We conclude the introduction with a short sketch of the paper. The proofs of Theorem 6131

and Theorem 8 follow with a similar approach as used for galled networks in [11]. This132

approach is based on the component graph method from [13] which we recall in the next133

section. Then, in Section 3, we consider GTCn,k for small and large values of k. Finally,134

Section 4 contains the proofs of our main results (Theorem 6 and Theorem 8). We conclude135

the paper with some final remarks in Section 5.136

2 The Component Graph Method137

The component graph method for galled networks was introduced in [13] and used in [4, 12]138

to prove asymptotic results. It is explained in detail in all these papers. However, to make139

the current paper more self-contained, we briefly recall it.140

Let N be a galled network. Then, by removing all the edges leading to reticulation141

vertices (these are the so-called reticulation edges), we obtain a forest whose trees are called142

the tree-components of N .143

The component graph of N , denoted by C(N), is now a directed, acyclic graph which has144

a vertex for every tree-component. Moreover, the vertices are connected by the removed145
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Figure 2 A galled network N and its component graph C(N) which is a phylogenetic tree.

reticulation edges in the same way as the tree-components have been connected by them.146

Finally, we attach the leaves in the tree-components to the corresponding vertices in C(N)147

unless a vertex v of C(N) is a terminal vertex and its corresponding tree-component has148

exactly one leaf, in which case we use the label of that leaf to label v. Note that C(N) may149

contain double edges. We replace such a double edge by a single edge and indicate that it150

was a double edge by placing an arrow on it; see Figure 2 for a galled network together with151

its component graph. Also, denote by C̃(N) the component graph of C(N) with all arrows152

on edges removed. Then, the authors of [13] made the following important observation.153

I Proposition 9 ([13]). N is a galled network if and only if C̃(N) is a (not necessarily154

binary) phylogenetic tree.155

I Remark 10. By this result, for a galled network N , C(N) must have arrows on all internal156

edges (i.e., all edges whose two endpoints are both internal nodes).157

The component graph can be seen as a kind of compression of N that retains some but not158

all structural properties of N . Indeed, different networks N might share the same component159

graph. However, we can generate all galled networks of size n from a list of all component160

graphs (i.e., phylogenetic trees) with n labeled leaves by a decompression procedure which is161

explained below.162

First, we need the notion of one-component networks.163

I Definition 11 (One-component Network). A phylogenetic network is called a one-component164

network if every reticulation node has a leaf as its child.165

I Remark 12. The name comes from the fact that one-component networks only have one166

non-trivial tree-component.167

Now, let a component graph C of a galled tree-child network be given. We do a breadth-168

first traversal of the internal vertices of C and replace these vertices v by a one-component169

galled network Ov whose leaves below reticulation vertices are labeled with the first k labels,170

AofA 2024



2:6 Galled Tree-Child Networks

where k is the number of outgoing edges of v in C that have an arrow on them, and whose171

size is equal to the outdegree c(v) of v. (In order to avoid confusion, the labels of Ov are172

subsequently assumed to be from the set {1, . . . , c(v)}.) Then, attach the subtrees rooted173

at the children of v which are connected to v by edges with arrows on them to the leaves174

of Ov with labels {1, . . . , k}, where the subtree with the smallest label is attached to 1, the175

subtree with the second smallest label is attached to 2, etc. Moreover, relabel the remaining176

leaves of Ov, namely the ones with the labels {k + 1, . . . , c(v)}, by the remaining labels of177

the subtrees of v (which are all of size 1, i.e., they are leaves in C) in an order-consistent way.178

By using all possible one-component galled networks in every step, this gives all possible179

galled networks with C as component graph. Moreover, if we start from C̃, then we first180

have to place arrows on all edges whose heads are internal nodes of C̃ (see Remark 10) and181

for all remaining edges, we can freely decide if we want to place an arrow on them or not.182

Overall, this gives the following result which was one of the main results in [13].183

I Proposition 13 ([13]). We have,184

GNn =
∑
T

∏
v

clf(v)∑
j=0

(
clf(v)
j

)
Mc(v),c(v)−clf(v)+j ,185

where the first sum runs over all (not necessarily binary) phylogenetic trees T of size n, the186

product runs over all internal nodes of T , c(v) is the outdegree of v, clf(v) is the number187

of children of v which are leaves, and Mn,k denotes the number of one-component galled188

networks of size n with k reticulation vertices, where the leaves below the reticulation vertices189

are labeled with labels from the set {1, . . . , k}.190

For galled tree-child networks, it is now clear that the same formula holds with the only191

difference thatMn,k has to be replaced by the corresponding number of one-component galled192

tree-child networks. However, this number is the same as the number of one-component193

tree-child networks.194

I Lemma 14. Every one-component tree-child network is a one-component galled tree-child195

network.196

Proof. Let v be a reticulation vertex and consider a pair of edge-disjoint paths from a197

common tree vertex to v. (Note that such a pair trivially exists.) Then, no internal vertex198

can be a reticulation vertex because such a reticulation vertex would not be followed by a199

leaf. Thus, v is in a tree cycle which shows that the network is indeed galled. J200

Denote by Bn,k the number of one-component tree-child networks of size n and k201

reticulation vertices, where the labels of the leaves below the reticulation vertices are202

{1, . . . , k}. Then, we have the following analogous result to Proposition 13.203

I Proposition 15. We have,204

GTCn =
∑
T

∏
v

clf(v)∑
j=0

(
clf(v)
j

)
Bc(v),c(v)−clf(v)+j , (5)205

where notation is as in Proposition 13 and Bn,k was defined above.206

I Remark 16. Using this result, by systematically generating all (not necessarily binary)207

phylogenetic trees of size n and computing Bn,k with the closed-form expression below, we208

obtain the following table for small values of n:209
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n GTCn

1 1
2 3
3 48
4 1,611
5 87,660
6 6,891,615
7 734,112,540
8 101,717,195,895
9 17,813,516,259,420
10 3,857,230,509,496,875

Table 1 The values of GTCn for 1 ≤ n ≤ 10.

We will deduce all our results from (5). In addition, we make use of the following results210

for Bn,k which were proved in [3] and [11]. To state them, denote by OTCn,k the number of211

one-component tree-child networks of size n with k reticulation vertices and by OTCn the212

(total) number of one-component tree-child networks of size n. Then,213

OTCn,k =
(
n

k

)
Bn,k (6)214

and215

OTCn =
n−1∑
k=0

OTCn,k.216

(Note that the tree-child property implies the k ≤ n− 1 and this bound is sharp.)217

I Proposition 17 ([3, 11]). (i) We have,218

OTCn,k =
(
n

k

)
(2n− 2)!

2n−1(n− k − 1)! .219

(ii) As n→∞,220

OTCn,k = 1
2
√
eπ
n−3/2e2

√
n

(
2
e2

)n
n2ne−x

2/
√
n

(
1 +O

(
1 + |x|3

n
+ |x|√

n

))
,221

where k = n−
√
n+ x and x = o(n1/3).222

The second result above gives a local limit theorem (see, e.g., Section IX.9 in [7]) for the223

(random) number of reticulation vertices of a one-component tree-child network of size n224

which is picked uniformly at random from all one-component tree-child networks of size n. It225

implies the following (asymptotic) counting result for OTCn.226

I Corollary 18 ([11]). As n→∞,227

OTCn ∼
1

2
√
e
n−5/4e2

√
n

(
2
e2

)n
n2n.228
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2:8 Galled Tree-Child Networks

3 Networks with Few and Many Reticulation Nodes229

In this section, we consider GTCn,k for small and large k. We start with large k.230

As mentioned in the last section, for tree-child networks, we have that k ≤ n− 1 and this231

bound is sharp. Clearly, this implies that k ≤ n− 1 also holds for galled tree-child networks.232

Again this bound is sharp. We summarize this in the following lemma.233

I Lemma 19. The number of reticulation vertices of a galled tree-child network of size n is234

at most n− 1 where this bound is sharp.235

Proof. Let C̃ be the component graph of a galled tree-child network of size n which by236

Proposition 9 is a phylogenetic tree. The maximal number of reticulation vertices of a237

network decompressed from C̃ is achieved by placing the maximal number of arrows at all238

outgoing edges of internal vertices v of C̃. Note that this number is c(v) − 1, where c(v)239

denotes the degree of v, since placing arrows on all outgoing edges is not possible because240

Bc(v),c(v) = 0 (as Bn,k denotes the number of certain one-component tree-child networks and241

k ≤ n− 1). Thus, the maximal number of reticulation vertices equals242 ∑
v

(c(v)− 1) =
∑
v

c(v)− (# internal nodes of C̃), (7)243

where the sums run over all internal vertices of C̃. By the handshake lemma,244 ∑
v

c(v) = (# internal nodes of C̃ − 1) + n245

which, by plugging into (7), gives the claimed result. J246

The proof of the last lemma also reveals the structure of maximally reticulated galled247

tree-child networks of size n: They are obtained by decompressing component graphs C̃ that248

are phylogenetic trees of size n with at least one leaf ` attached to every internal vertex v by249

placing arrows on all outgoing edges of v except the one leading to `. This can be translated250

into generating functions. Set:251

M(z) :=
∑
n≥1

GTCn,n−1
zn

n! , B(z) :=
∑
n≥1

Bn,n−1
zn

n! =
∑
n≥1

(2n− 2)!
2n−1n! z

n,252

where the last line follows from (6) and Proposition 17-(i). Then, we have the following253

result.254

I Lemma 20. We have,255

M(z) = z + zB′(M(z)). (8)256

Proof. According to the explanation in the paragraph preceding the lemma, a maximally257

reticulated galled tree-child network is either a leaf or obtained from a maximally reticulated258

one-component tree-child network with the leaves below the reticulation vertices replaced by259

maximally reticulated galled tree-child networks. This translates into260

M(z) = z +
∑
n≥1

Bn,n−1
zM(z)n−1

(n− 1)! ,261

where the z inside the sum counts the leaf which is not below the reticulation vertex and the262

factor 1/(n− 1)! discards the order of the maximally reticulated galled tree-child networks263

(counted by M(z)n−1) which are attached to the children below the reticulation vertices.264

The claimed result follows from this. J265
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Note that (8) is of Lagrangian type. Thus, we can obtain the asymptotics of GTCn,n−1266

by applying Lagrange’s inversion formula and the following result from [1].267

I Theorem 21 ([1]). Let S(z) be a formal power series with s0 = 0, s1 6= 0 and nsn−1 ∼ γsn.268

Then, for α 6= 0 and β real numbers,269

[zn](1 + S(z))αn+β ∼ αeαs1γnsn.270

I Theorem 22. The number of maximally reticulated galled tree-child networks GTCn,n−1271

satisfies, as n→∞,272

GTCn,n−1 ∼
√
eπn−1/2

(
2
e2

)n
n2n.273

I Remark 23. For tree-child networks, it was proved in [11] that TCn = Θ(TCn,n−1). (This274

was a main step in the proof of (2).) The above result together with Theorem 6 shows that275

the same is not true for galled tree-child networks.276

Proof. Applying the Lagrange inversion formula to (8) gives277

GTCn,n−1 = n![zn]M(z) = (n− 1)![ωn−1](1 +B′(ω))n. (9)278

Next, by Stirling’s formula, as n→∞,279

[zn]B′(z) = Bn+1,n

n! = (2n)!
2nn! ∼

√
2
(

2
e

)n
nn.280

Thus, we can apply Theorem 21 to (9) with γ = 1/2 and obtain that, as n→∞,281

GTCn,n−1 ∼
√
enBn,n−1 =

√
en

(2n− 2)!
2n−1 ∼

√
eπn−1/2

(
2
e2

)n
n2n.282

This is the claimed result. J283

We next consider GTCn,k with k small, i.e., the other extreme case of the number of284

reticulation vertices. Here, we have the following result which shows that the distribution of285

a uniformly chosen phylogenetic network with n leaves and k reticulation nodes concentrates286

on the set of galled tree-child networks. This explains why the asymptotic expansions of287

TCn,k and GNn,k in (4) are the same. (It would be interesting to know whether or not this288

distribution concentrates on an even smaller set.)289

I Theorem 24. For fixed k, as n→∞,290

GTCn,k ∼
2k−1√2
k!

(
2
e

)n
nn+2k−1. (10)291

The proof of this result uses ideas from [10].292

Proof. First consider galled tree-child networks of size n which are obtained by decompressing293

phylogenetic trees of size n which have all k arrows on the edges from the root, i.e., the root294

has at least one leaf and all other children are either internal nodes or leaves (with at most k295

internal nodes) and all internal nodes have just leaves as children. By Proposition 8 in [10],296

the number of these galled tree-child network has the same asymptotics as the one on the297

right-hand side of (10). Moreover, these networks also dominate the asymptotics in the case298

of tree-child networks. Thus, the remaining galled tree-child networks are asymptotically299

negligible as their number is bounded above by the number of the remaining tree-child300

networks. J301

AofA 2024



2:10 Galled Tree-Child Networks

I Remark 25. Note that this re-proves the (surprising) asymptotic result for GNn,k in (4)302

from [4]. On the other hand, the above asymptotic result could be also deduced from303

(4). In order to explain this, denote by PNn,k (resp. T Cn,k/GNn,k/GT Cn,k) the set of all304

phylogenetic networks (resp. tree-child networks/galled networks/galled tree-child networks)305

with n leaves and k reticulation nodes. Then,306

|T Cn,k ∪ GNn,k| = |T Cn,k|+ |GNn,k| − |T Cn,k ∩ GNn,k|307

= TCn,k + GNn,k −GTCn,k308
309

and |T Cn,k ∪ GNn,k| ≤ PNn,k. From this the asymptotic result for GTCn,k follows from310

those of (4). (We are thankful to one of the reviewers for this remark.)311

4 Proof of the Main Results312

In this section, we first prove Theorem 6 and then state a result which implies Theorem 8.313

For the proof of Theorem 6, we closely follow the method of proof of (3) from [12]. The314

main idea is to use (5) to find asymptotic matching upper and lower bounds for GTCn.315

First, for an upper bound, we pick a (not necessarily binary) phylogenetic tree T of316

size n (which is considered to be a component graph of a galled tree-child network of size317

n) and decompress it by picking for internal vertices v of T any one-component tree-child318

network of size c(v) (where the notation is as in Proposition 13). Since, as explained in319

Section 2, actually only certain one-component tree-child networks are permissible, this320

modified decompression procedure overcounts the number of galled tree-child networks of321

size n. More precisely, we consider322

Un :=
∑
T

∏
v

OTCc(v),323

where the first sum runs over all phylogenetic trees T of size n and the product runs over324

internal vertices of T . Then, we have GTCn ≤ Un. Next, set325

U(z) :=
∑
n≥1

Un
zn

n! , A(z) :=
∑
n≥1

OTCn+1
zn

(n+ 1)! .326

Then, the definition of Un implies the following result.327

I Lemma 26. We have,328

U(z) = z + U(z)A(U(z)).329

Proof. The networks counted by Un are either a leaf or a one-component tree-child network330

with n leaves which are replaced by an unordered sequence of networks of the same type.331

This gives332

U(z) = z +
∑
n≥2

OTCn
U(z)n

n!333

from which the claimed result follows. J334

Now, we can proceed as in the proof of Theorem 22 to obtain the following asymptotic335

result for Un.336
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I Proposition 27. As n→∞,337

Un ∼
1

2 4
√
e
n−5/4e2

√
n

(
2
e2

)n
n2n.338

Proof. From Lemma 26 and the Lagrange inversion formula,339

Un = n![zn]U(z) = (n− 1)![ωn−1](1−A(ω))−n.340

The result follows from this by applying Theorem 21 and Corollary 18. J341

Next, we need a matching lower bound. Therefore, we consider (5) with the first sum342

restricted to phylogenetic trees of the shape (where we have removed the leaf labels):343

. . . . . .

2j

n− 2j

344

We denote the resulting term by Ln. The decompression procedure from Section 2 then gives345

the following result.346

I Lemma 28. We have,347

Ln =
bn/2c∑
j=0

(
n

2j

)
(2j)!
j!2j

n−2j∑
`=0

(
n− 2j
`

)
Ln−j,j+`348

=
bn/2c∑
j=0

(
n

2j

)
(2j)!
j!2j

n−2j∑
`=0

(
n− 2j
`

)
(2n− 2j − 2)!

2n−j−1(n− 2j − `− 1)! . (11)349

350

Proof. The first equality is explained as in the proof of Lemma 9 in [12] and the second351

equality follows from (6) and Proposition 17-(i). J352

From this result, we can deduce (matching) first-order asymptotics for Ln which then353

together with the asymptotics of the upper bound (Proposition 27) concludes the proof of354

Theorem 6.355

I Proposition 29. As n→∞,356

Ln ∼
1

2 4
√
e
n−5/4e2

√
n

(
2
e2

)n
n2n.357

Sketch of the proof. From Stirling’s formula (similar to the proof of Proposition 17-(ii)),358 (
n− 2j
`

)
(2n− 2j − 2)!

2n−j−1(n− 2j − `− 1)! ∼
1

2j+1√eπ
n−3/2e2

√
n

(
2
e2

)j
n2n−2je−x

2/
√
n,359

where k = n −
√
n + x and this holds uniformly for |x| ≤ n1/2+ε and j ≤ nε with ε > 0360

arbitrarily small. Using the Laplace method then gives,361

n−2j∑
`=0

(
n− 2j
`

)
(2n− 2j − 2)!

2n−j−1(n− 2j − `− 1)! ∼
1

2j+1√e
n−5/4e2

√
n

(
2
e2

)n
n2n−2j

362
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uniformly for j ≤ nε for arbitrarily small ε > 0. Finally, by plugging the last relation into363

(11),364

Ln ∼
1

2
√
e

∑
j≥0

1
j!4j

n−5/4e2
√
n

(
2
e2

)n
n2n

365

which gives the claimed result. J366

I Remark 30. Note that this proposition shows that a “typical” galled tree-child network of367

size n is obtained by decompressing component graphs of the form given before Lemma 28.368

This implies, e.g., that the Sackin index defined in [17] of a galled tree-child network has the369

unusual expected order n7/4.370

Finally, by refining the above method (see Section 6 of [12] where the same was done371

for galled networks), we obtain the following result which implies our second main result372

(Theorem 8).373

I Theorem 31. Let In be the number of reticulation vertices of a random galled tree-child374

network of size n which are not followed by a leaf and Rn be the total number of reticulation375

vertices. Then, as n→∞,376 (
In,

Rn − n+
√
n

4
√
n/4

)
d−→ (I,R),377

where I and R are independent with I d= Poisson(1/4) and R d= N(0, 1).378

5 Conclusion379

In this paper, we introduced the class of galled tree-child networks which is obtained as380

intersection of the classes of galled networks and tree-child networks. Our reason for doing381

so was two-fold: (i) Different tools have been used to prove results for galled networks382

and tree-child networks [11, 12]; consequently, we were curious about which tools apply383

to the combination of these classes? (ii) It was recently proved that the number of galled384

networks and tree-child networks have the same first-order asymptotics when the number of385

reticulation vertices is fixed [4, 10]. Why is that the case?386

As for (i), we showed that an asymptotic counting result for galled tree-child networks387

(Theorem 6) can be obtained with the methods for galled networks, however, the result388

contains a stretched exponential as does the asymptotic result for tree-child networks. In389

addition, we showed that the number of reticulation vertices for a random galled tree-child390

networks is asymptotically normal (Theorem 8), whereas the limit laws of the same quantities391

for galled networks and tree-child networks were discrete. As for (ii), we showed that the392

number of galled tree-child networks also satisfies the same first order asymptotics when the393

number of reticulation vertices is fixed. This explains the previous results from [4, 10].394

Overall, the class of galled tree-child networks is interesting and thus merits further395

examination. In particular, due to Remark 30, studying the shape of random galled tree-child396

networks seems to be more feasible than studying the shape of random networks from other397

network classes because such a study boils down to the easier task of studying the shape of398

one-component tree-child networks which have a straightforward recursive decomposition399

that, e.g., resulted in a closed-form expression for their numbers; see [17]. The latter paper,400

where one-component tree-child networks are called simplex networks, e.g., asks for properties401
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of the height and such results would immediately entail corresponding results for random402

galled tree-child networks. (Studying the height is an open problem for most classes of403

phylogenetic networks.) We may come back to this question in future work.404
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