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Abstract12

Galled trees appear in problems concerning admixture, horizontal gene transfer, hybridization, and13

recombination. Building on a recursive enumerative construction, we study the asymptotic behavior14

of the number of rooted binary unlabeled (normal) galled trees as the number of leaves n increases,15

maintaining a fixed number of galls g. We find that the exponential growth with n of the number of16

rooted binary unlabeled normal galled trees with g galls has the same value irrespective of the value17

of g ≥ 0. The subexponential growth, however, depends on g; it follows cgn2g−3/2, where cg is a18

constant dependent on g. Although for each g, the exponential growth is approximately 2.4833n,19

summing across all g, the exponential growth is instead approximated by the much larger 4.8230n.20
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1 Introduction28

Rooted binary trees are a staple of mathematical phylogenetic analysis, as they are used to29

represent diverse biological processes taking place in time—including the evolution of species,30

the evolution of genes among those species, and the divergence of populations [9, 21, 24].31

The root represents a common ancestor, and the leaves represent subsequent biological32

entities, often in the present day. Viewed as objects evolving in time, by extension of33

“vertical” inheritance that occurs in genetic transmission from parents to offspring, biological34

divergences are viewed as taking place vertically on the tree. Mathematical phylogenetic35

analyses of trees have produced rich contributions to algorithmic and combinatorial studies.36

Certain evolutionary events, however, involve merging rather than divergence of biological37

lineages. Such events include the recombination that occurs during gamete formation,38

population admixture, horizontal gene transfer, and hybridization. To describe processes39

that include these events, we must look beyond trees to phylogenetic networks [14, 17, 18].40
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19:2 Unlabeled galled trees with a fixed number of galls

Figure 1 Features of a gall in a galled tree. (A) A gall as a representation of a biological merging
event. Biological lineages a and b each bifurcate, with one branch of each bifurcation merging to
form lineage c. (B) Nomenclature for the various nodes in a gall.

Among the phylogenetic networks, galled trees are some of the simplest. As their name41

suggests, they are tree-like, but they can contain certain internal nodes with in-degree 242

and out-degree 1, representing permitted classes of mergings. Galled trees are named for43

the growths, termed galls, which appear in plants but which do not disrupt their tree-like44

structure. They were first introduced in the study of recombination [15, 16, 23].45

Mathematically, a galled tree allows each vertex or edge in a graph to be contained in at46

most one cycle. An additional requirement is needed for galled trees to be meaningful for47

biological processes such as hybridization. In a hybridization event, two biological lineages, a48

and b, each bifurcate; a merging event occurs between two branches, one from each bifurcation,49

producing a third lineage, c (Figure 1A). The structure of the event requires that when50

viewed graphically, a gall—a cycle in the graph—contains at least four nodes. These include51

a top node, two hybridizing nodes, and one hybrid node. Additional side nodes are permitted,52

and we regard the hybridizing nodes as special side nodes (Figure 1B). The requirement that53

galls have at least these four nodes (i.e. the top node must not be a hybridizing node) is54

equivalent to a requirement that galled trees be normal.55

Many enumerative problems on galled trees have been investigated [3, 4, 5, 22]; this study56

concerns rooted binary unlabeled normal galled (non-plane) trees. Given number of galls57

g, as the number of leaves n → ∞, what is the growth of the size of this class? The case58

of g = 0 is the enumeration of rooted binary unlabeled trees, and we previously studied59

g = 1 [1]. Building on a recurrence for rooted binary unlabeled normal galled trees with60

n leaves and g galls, we obtain a generating function for g = 2. We find the asymptotic61

behavior of the number of trees with n leaves and g = 2 galls, and we obtain asymptotics for62

each g > 2. In our main result, Theorem 10, we report that the number of galled trees with63

n leaves and g galls has the form βgn
2g− 3

2 ρ−n, where ρ is the radius of convergence of the64

generating function for the g = 0 case, and βg is a constant that depends solely on g.65

2 Definitions66

We define our concepts formally. We assume that all networks and trees are binary; we67

usually drop the term binary. A rooted phylogenetic network is a directed acyclic graph in68

which four properties hold. (i) There exists a unique node with in-degree 0 and out-degree69
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Figure 2 Rooted binary unlabeled galled trees. (A) A tree with no galls. (B) A galled tree with
one gall. (C) A galled tree with a root gall. (D) A galled tree with two galls. (E) A galled tree that
is not a normal galled tree and that is not included in the class of galled trees that we enumerate.

2. This node is the root node. (ii) Leaf nodes possess in-degree 1 and out-degree 0. (iii)70

Non-leaf, non-root nodes possess in-degree 2 and out-degree 1 or in-degree 1 and out-degree71

2. (iv) Edges are directed away from the root. Nodes with in-degree 2 and out-degree 1 are72

reticulation nodes (or hybrid nodes). Nodes with in-degree 1 and out-degree 2 are tree nodes.73

A rooted galled tree is a rooted phylogenetic network with three additional properties. (v)74

Each reticulation node ar has a unique ancestor node r so that exactly two non-overlapping75

paths of edges connect r to ar. Ignoring the direction of the edges, the two paths from r to76

ar produce a cycle Cr. The cycle is termed a gall. (vi) Consider galls Cr and Cs, associated77

with reticulation nodes ar and as, ar 6= as. The sets of nodes in the galls Cr and Cs are78

disjoint. (vii) Ancestor node r and reticulation node ar are separated by two or more edges.79

Condition (vii) encodes the requirement that we consider only normal galled trees (Figure 2).80

We generally drop the terms rooted and normal, and refer only to galled trees, and where81

a distinction is necessary, labeled and unlabeled galled trees. Although a galled tree is not82

technically a tree due to the presence of cycles, we continue to refer to galled trees as trees.83

We similarly refer to the galled trees rooted at internal nodes of a galled tree as subtrees. Our84

view of galls as representations of biological merging events leads us to depict hybridizing85

nodes and their associated hybrid node on a horizontal line, representing the simultaneity of86

these nodes when a galled tree is taken to represent a structure evolving in time [2, 20].87

A basic result describes the maximal number of galls possible in a galled tree with n88

leaves. A gall contains three or more descendant subtrees: one from the reticulation node,89

two from the hybridizing nodes, and one for each additional side node. Hence, the smallest90

galled tree possesses n = 3 leaves. Adding a gall to a galled tree involves replacing one91

subtree with at least three subtrees, so that each gall adds at least two leaves. For a tree92

with g galls, the number of leaves satisfies n ≥ 2g + 1, or g ≤ bn−1
2 c [20].93

We will need to consider compositions, ordered lists of positive integers that sum to a94

specified value. We denote by C(a, b) the compositions of a natural number a into b parts.95

C(a, b) is the set of ordered lists of positive integers of length b, (i1, i2, . . . , ib), with sum equal96

to a. We denote by Cp(a, b) the subset of C(a, b) containing the palindromic compositions of97

a, that is, the compositions (i1, i2, . . . , ib) for which ij = ib−j+1 for each j from 1 to b.98

3 Previous work99

We review a number of results. The rooted binary unlabeled galled trees generalize the100

rooted binary unlabeled trees without galls. Letting Un denote the number of rooted binary101

unlabeled trees with no galls and letting U(t) denote the generating function
∑

n≥0 Unt
n,102

U(t) = t+ 1
2U

2(t) + 1
2U(t2). (1)103
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19:4 Unlabeled galled trees with a fixed number of galls

Denoting the radius of convergence by ρ, as t→ ρ−, we have U(t) ∼ 1− γ
√

1− t/ρ, where104

γ ≈ 1.1300 and ρ ≈ 0.4027 [8, p. 55] [10, pp. 476-477]. The asymptotic approximation for105

the number of rooted binary unlabeled trees (with no galls) is,106

Un = [tn]U(t) ∼ γ

2Γ( 1
2 )
n−

3
2 ρ−n. (2)107

In our previous work on rooted binary unlabeled normal galled trees [1] (henceforth108

“unlabeled galled trees”), we obtained a recursion enumerating the An unlabeled galled trees109

with n leaves and another recursion enumerating the En,g unlabeled galled trees with a110

specified number of galls g. We specifically considered the case of g = 1. We also studied the111

asymptotics of An and En,1 through their generating functions. The generating function for112

unlabeled galled trees, considering all possible numbers of galls, was found to be [1, eq. 36]113

A(t) = t+ 1
2A

2(t) + 1
2A(t2) + 1− 1

1−A(t) + A(t)
2[1−A(t)]2 + A(t)

2[1−A(t2)] . (3)114

The three leftmost terms, identical to the generating function U(t) (eq. (1)), arise from the115

galled trees in which two subtrees descend immediately from the root. The other terms arise116

from galled trees with a gall that contains the root, a root gall.117

Using the asymptotics of implicit tree-like classes theorem [10, pp. 467-468], we obtained118

the asymptotics of the number of galled trees with n leaves, An [1, eq. 42]: An = [tn]A(t) ∼119 [
δ/
(
2Γ( 1

2 )
)]
n−

3
2α−n, where δ ≈ 0.2793 and α ≈ 0.2073. A(t) has convergence radius about120

half that of U(t), so that galled trees are much more numerous than the trees without galls.121

We also derived the generating function E1(t) and asymptotic growth of the number of122

unlabeled galled trees with exactly one gall. We state these results as propositions.123

I Proposition 1. [1, eq. 48] The generating function E1(t) for the number of unlabeled galled124

trees with 1 gall satisfies125

E1(t) = 1
1− U(t) −

1
[1− U(t)]2 + U(t)

2[1− U(t)]3 + U(t)
2[1− U(t)][1− U(t2)] . (4)126

I Proposition 2. [1, eq. 50] The asymptotic growth of the number En,1 of unlabeled galled127

trees with n leaves and 1 gall satisfies128

En,1 ∼
1

2γ3Γ( 3
2 )
n

1
2 ρ−n = 1

γ3√π
n

1
2 ρ−n. (5)129

Proposition 2 follows from the fact that as t→ ρ−, E1(t) ∼ 1/[2γ3(1− t/ρ) 3
2 ]. E1(t) in eq. (4)130

depends on U(t). Eq. (5) clarifies that the exponential growth of the number of unlabeled131

galled trees with one gall is the same as that of the number of unlabeled galled trees with no132

galls; only the subexponential growth differs. We will generalize this result.133

4 Recursion134

4.1 Recursion for g galls, En,g135

In [1, eq. 27], we obtained a recursion for En,g, the number of unlabeled galled trees with n136

leaves and exactly g galls; Table 3 reported the numerical values En,g up to n = 18. The137

base cases are E1,0 = 1 and E1,g = 0 for g ≥ 1. We also write Em,` = 0 when m is not a138

positive integer, ` is not a positive integer, or both.139
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I Proposition 3. For (n, g) with n ≥ 2 and 0 ≤ g ≤ bn−1
2 c, the number of unlabeled galled140

trees with n leaves and g galls is141

En,g = 1
2

[( ∑
c∈C(n,2)

∑
d∈C(g+2,2)

2∏
i=1

Eci,di−1

)
+ En

2 , g
2

(6)142

+
( n∑

k=3
(k − 2)

∑
c∈C(n,k)

∑
d∈C(g−1+k,k)

k∏
i=1

Eci,di−1

)
(7)143

+
( bn−1

2 c∑
a=1

∑
c∈Cp(n,2a+1)

∑
d∈Cp

(
g−1+(2a+1),2a+1

)
a+1∏
i=1

Eci,di−1

)]
. (8)144

145

The approach is to use a recursion at the root node. We sum over all products of possible146

counts of subtrees, each with fewer than n leaves. Pairs of galled trees that are reflections of147

one another over the root—or the axis connecting the top node to the reticulation node of148

the root gall—are the same unlabeled galled tree, explaining the leading 1
2 . We add back149

terms for galled trees that are symmetric over the root, which are not double-counted.150

Line (6) in Proposition 3 enumerates galled trees with n leaves and g galls that do not151

have a root gall. The first term traverses combinations of numbers of leaves in the two152

subtrees summing to n by traversing compositions c of n into 2 parts
(
c ∈ C(n, 2)

)
. It also153

traverses combinations of placements of the g galls in the two subtrees. Because subtrees154

can possess 0 galls, these combinations are identified from compositions of g + 2 into 2 parts,155

subtracting 1 gall in each part
(
d ∈ C(g+ 2, 2)

)
. The second term adds back the galled trees156

with identical subtrees; this term is nonzero only if both n and g are even.157

Line (7) counts galled trees with n leaves and g galls that do have a root gall. It traverses158

the possible number k of subtrees descending from side nodes, hybridizing nodes, and the159

hybrid node of the root gall (3 to n, the number of leaves). It then traverses the k−2 possible160

nodes in the root gall where the hybrid node can be placed: all k nodes except immediate161

descendants of the root. We then traverse the possible combinations of the n leaves and g− 1162

remaining (non-root) galls into the k subtrees, again allowing subtrees with no galls.163

Line (8) adds back half the galled trees with n leaves and g galls that have a root gall and164

that are symmetric over the reticulation node. Here, a is the possible number of subtrees of165

the root gall on each side of the reticulation node, so that the root gall has 2a+ 1 subtrees in166

total. The composition of the n leaves into 2a+ 1 subtrees and the composition of the g − 1167

galls into those subtrees are both palindromic. Given these compositions, a tree is specified168

by its subtrees of one side of the reticulation node and the subtree of the reticulation node.169

4.2 Recursion for two galls, En,2170

For g = 2, for n ≥ 2, the recursion for En,g becomes171

En,2 = 1
2

[( n−1∑
c=1

2∑
d=0

Ec,dEn−c,2−d

)
+ En

2 ,1172

+
n∑

k=3
(k − 2)

∑
c∈C(n,k)

∑
d∈C(k+1,k)

k∏
i=1

Eci,di−1173

+
bn−1

2 c∑
a=1

∑
c∈Cp(n,2a+1)

∑
d∈Cp(2a+2,2a+1)

a+1∏
i=1

Eci,di−1

]
174

175
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19:6 Unlabeled galled trees with a fixed number of galls

176

= 1
2

[(
2

n−1∑
m=1

UmEn−m,2 +
n−1∑
m=1

Em,1En−m,1

)
+ En

2 ,1177

+
n∑

k=3
(k − 2)

n−1∑
m=k−1

∑
c∈C(m,k−1)

( k−1∏
i=1

Uci

)
kEn−m,1178

+
bn−1

2 c∑
a=1

∑
c∈Cp(n,2a+1)

( a∏
i=1

Uci

)
Eca+1,1

]
. (9)179

180

Recall here that Em,1 = 0 if m /∈ N. In the first line, m gives the number of leaves in the “left”181

subtree of the root and n−m is the number in the “right” subtree (the left–right distinction182

is solely for convenience, as we consider non-plane trees, in which the particular embedding183

of a tree in the plane is disregarded). In the second line, k is the number of subtrees of the184

root gall, m is the number of leaves across the k − 1 subtrees of the root gall that do not185

contain a gall, and n−m is the number of leaves in the subtree with the second gall.186

5 Analysis of En,2187

5.1 Generating function188

Using the recursion in eq. (9), we now find the generating function of En,2, which we define189

by E2(t) =
∑

n≥0 En,2t
n. Eq. (9) holds for all n ≥ 0 because En,2 = 0 for n ≤ 4 and En,1 = 0190

for n ≤ 2. We can add terms involving U0, E0,1, and E0,2, all of which equal zero. Then191

E2(t) =
∑
n≥0

En,2t
n = 1

2

[∑
n≥0

((
2

n∑
m=0

UmEn−m,2

)
+
( n∑

m=0
Em,1En−m,1

)
+ En

2 ,1

)
tn︸ ︷︷ ︸

E2i (t)

192

+
∑
n≥0

( n∑
k=3

(k − 2)k
n−1∑

m=k−1

∑
c∈C(m,k−1)

( k−1∏
i=1

Uci

)
En−m,1

)
tn

︸ ︷︷ ︸
E2ii (t)

193

+
∑
n≥0

( bn−1
2 c∑

a=1

∑
c∈Cp(n,2a+1)

( a∏
i=1

Uci

)
Eca+1,1

)
tn

︸ ︷︷ ︸
E2iii (t)

]
. (10)194

195

We now simplify the three terms of E2(t):196

E2i(t) = 2
∑
m≥0

∑
n≥m

(Umt
m)(En−m,2t

n−m) +
∑
m≥0

∑
n≥m

(Em,1t
m)(En−m,1t

n−m) +
∑
n≥0

En
2 ,1t

n
197

= 2
∑
m≥0

(Umt
m)
∑
`≥0

(E`,2t
`) +

∑
m≥0

(Em,1t
m)
∑
`≥0

(E`,1t
`) +

∑
n≥0

En,1t
2n

198

= 2U(t) E2(t) + E2
1 (t) + E1(t2). (11)199200



L. Agranat-Tamir, M. Fuchs, B. Gittenberger, and N. A. Rosenberg 19:7

For E2ii(t), we obtain201

E2ii(t) =
∑
k≥3

(k − 2)k
∑

m≥k−1

∑
c∈C(m,k−1)

k−1∏
i=1

Uci
tci

∑
n≥m

En−m,1t
n−m

202

=
∑
k≥3

(k − 2)k
∑
i1≥0

∑
i2≥0

. . .
∑

ik−1≥0
Ui1Ui2 · · ·Uik−1t

i1+i2+...+ik−1
∑
`≥0

E`,1t
`

203

=
∑
k≥3

(k − 2)k Uk−1(t) E1(t) = E1(t)
[∑

k≥2
(k2 − 1)Uk(t)

]
204

= E1(t)
[(∑

k≥0
k2Uk(t)

)
− U(t)−

(∑
k≥0
Uk(t)

)
+ 1 + U(t)

]
205

= E1(t)
[
U(t) + U2(t)
[1− U(t)]3 −

1
1− U(t) + 1

]
. (12)206

207

Finally, E2iii(t) becomes208

E2iii(t) =
∑
a≥1

∑
m≥a

∑
c∈C(m,a)

a∏
i=1

Ucit
2ci

∑
n≥2m

En−2m,1t
n−2m

209

=
∑
a≥1

∑
i1≥0

∑
i1≥0

. . .
∑
ia≥0

Ui1Ui2 · · ·Uiat
2i1+2i2+...+2ia

∑
`≥0

E`,1t
`

210

=
∑
a≥1
Ua(t2) E1(t) = E1(t)

1− U(t2) − E1(t). (13)211

212

Summing the three parts, we obtain the following proposition.213

I Proposition 4. The generating function E2(t) for the number of unlabeled galled trees with214

2 galls satisfies215

E2(t) = E1(t)
2[1− U(t)]

[
E1(t) + U(t) + U2(t)

[1− U(t)]3 −
1

1− U(t) + 1
1− U(t2)

]
+ E1(t2)

2[1− U(t)] . (14)216

5.2 Asymptotic analysis217

To analyze the asymptotics of E2(t) as t→ ρ−, we take the highest-order terms in Proposition218

4, that is, the terms with the highest power of 1 − t/ρ in the denominator. We recall219

U(t) ∼ 1− γ
√

1− t/ρ. From Proposition 1, E1(t) ∼ 1/[2γ3(1− t/ρ) 3
2 ]. We have:220

E2(t) ∼ E2
1 (t)

2[1− U(t)] + 2E1(t)
2[1− U(t)]4 = 5

8γ7(1− t/ρ)7/2 . (15)221

To obtain a result for the coefficients En,2, we use the transfer formula (Corollary VI.1, page222

392 and Theorem VI.4, page 393 in [10])—according to which, if f(t) is ∆-analytic with a223

singularity at b, and f(t) ∼ (1− t
b )−a as t

b → 1 with t in ∆, and a /∈ {0,−1,−2, . . . }, then224

[tn]f(t) ∼ na−1b−n/Γ(a). Here, ρ fulfills the role of b and 7
2 that of a.225

I Proposition 5. The asymptotic growth of the number En,2 of unlabeled galled trees with n226

leaves and 2 galls satisfies227

En,2 ∼
5

8γ7Γ( 7
2 )
n

5
2 ρ−n = 1

3γ7√π
n

5
2 ρ−n. (16)228

We note the appearance of ρ−n and n5/2 to obtain the following corollary.229

I Corollary 6. The exponential growth of E2(t) is the same as that of U(t) and E1(t); however,230

its subexponential growth is greater.231
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19:8 Unlabeled galled trees with a fixed number of galls

6 Analysis of En,g232

6.1 Generating function233

We denote the generating function of the number of galled trees with exactly g galls by234

Eg(t) =
∑

n≥0 En,gt
n. Similarly to the case of g = 2, we use the recursion we had calculated235

for En,g in Proposition 3 to derive the generating function. From Proposition 3, we can236

decompose the generating function by237

Eg(t) = 1
2

[∑
n≥0

(( ∑
c∈C(n,2)

∑
d∈C(g+2,2)

2∏
i=1

Eci,di−1

)
+ En

2 , g
2

)
tn

︸ ︷︷ ︸
Egi (t)

238

+
∑
n≥0

( n∑
k=3

(k − 2)
∑

c∈C(n,k)

∑
d∈C(g−1+k,k)

k∏
i=1

Eci,di−1

)
tn

︸ ︷︷ ︸
Egii (t)

239

+
∑
n≥0

( bn−1
2 c∑

a=1

∑
c∈Cp(n,2a+1)

∑
d∈Cp(g−1+2a+1,2a+1)

a+1∏
i=1

Eci,di−1

)
tn

︸ ︷︷ ︸
Egiii (t)

]
. (17)240

241

where En,g = 0 for pairs with n = 0 or n = 1 and g ≥ 1. The terms in the decomposition are242

Egi(t) = 2
∑
m≥0

∑
n≥m

(Umt
m)(En−m,gt

n−m) +
g−1∑
j=1

∑
m≥0

∑
n≥m

(Em,jt
m)(En−m,g−jt

n−m)243

+
∑
n≥0

En
2 , g

2
tn244

Egii(t) =
g−1∑
`=1

∑
k≥3

(k − 2)
(
k

`

) ∑
m≥k−`

∑
c∈C(m,k−`)

k−∏̀
i=1

Ucit
ci245

×
∑
n≥m

∑
c̃∈C(n−m,`)

∑
d∈C(g−1,`)

∏̀
j=1

Ec̃j ,dj
tc̃j (18)246

Egiii(t) =
b g−1

2 c∑
`=0

∑
a≥1

(
a

`

) ∑
m1≥a−`

∑
c∈C(m1,a−`)

a−∏̀
i=1

Ucit
2ci247

×
∑

m≥m1+`

∑
c̃∈C(m−m1,`)

b g−1
2 c∑

b=`

∑
d∈C(b,`)

∏̀
j=1

Ec̃j ,dj
t2cj

∑
n≥2m

En−2m,g−1−2bt
n−2m,

(19)

248

249

where it is convenient to denote Un by En,0 for terms with g − 1− 2b = 0 in Egiii(t).250

In Egi(t), j is the number of galls in the left subtree of the root, supposing both subtrees251

possess at least one gall. In Egii(t), ` is the number of subtrees of the root gall that possess at252

least one gall; k is the number of subtrees of the root gall, so that
(

k
`

)
counts ways to select253

which ` subtrees possess galls; and m is the number of leaves in the k− ` remaining subtrees.254

Similarly, in Egiii(t), for symmetric root galls, ` is the number of subtrees of the left side255

of the root gall that contain galls; a is the number of subtrees of the left side of the root gall;256
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m1 is the sample size in the a− ` subtrees that do not possess galls; m−m1 is the sample257

size in the ` subtrees that do possess galls; and b is the number of galls in those ` subtrees.258

We now solve each part of the decomposition:259

Egi(t) = 2
∑
m≥0

(Umt
m)
∑
`≥0

(E`,gt
`) +

g−1∑
j=1

∑
m≥0

(Em,jt
m)
∑
`≥0

(E`,g−jt
`) +

∑
n≥0

En, g
2
t2n

260

= 2U(t) Eg(t) +
( g−1∑

j=1
Ej(t) Eg−j(t)

)
+ E g

2
(t2). (20)261

262

where E`(t) = 0 for ` /∈ N. The second part produces263

Egii(t) =
g−1∑
`=1

∑
k≥max(`,3)

(k − 2)
(
k

`

)∑
i1≥0

∑
i2≥0

. . .
∑

ik−`≥0
Ui1Ui2 · · ·Uik−`

ti1+i2+...+ik−`264

×
∑

d∈C(g−1,`)

∑
j1≥0

∑
j2≥0
· · ·
∑
j`≥0

Ej1,d1Ej2,d2 · · ·Ej`,d`
tj1+j2+...+j`265

=
g−1∑
`=1

( ∑
k≥max(`,3)

(k − 2)
(
k

`

)
Uk−`(t)

) ∑
d∈C(g−1,`)

∏̀
j=1
Edj

(t)266

=
g−1∑
`=1

(
3U(t)− 2 + `

[1− U(t)]`+2 + [[` = 1]]
) ∑

d∈C(g−1,`)

∏̀
j=1
Edj

(t). (21)267

268

Here, [[·]] denotes the Iverson bracket. Finally, for the third part,269

Egiii(t) =
b g−1

2 c∑
`=0

∑
a≥1

(
a

`

)∑
i1≥0

∑
i2≥0

. . .
∑

ia−`≥0
Ui1Ui2 · · ·Uia−`

t2i1+2i2+...+2ia−`270

×
b g−1

2 c∑
b=`

∑
d∈C(b,`)

∑
j1≥0

∑
j2≥0
· · ·
∑
j`≥0

Ej1,d1Ej2,d2 · · ·Ej`,d`
t2j1+2j2+...2j`271

×
∑
j≥0

Ej,g−1−2bt
j

272

=
b g−1

2 c∑
`=0

(∑
a≥1

(
a

`

)
Ua−`(t2)

) b g−1
2 c∑

b=`

∑
d∈C(b,`)

( ∏̀
j=1
Edj (t2)

)
Eg−1−2b(t)273

=
b g−1

2 c∑
`=0

(
1

[1− U(t2)]`+1 − [[` = 0]]
) b g−1

2 c∑
b=`

∑
d∈C(b,`)

( ∏̀
j=1
Edj

(t2)
)
Eg−1−2b(t). (22)274

275

6.2 Asymptotic analysis276

Eg(t) is the sum 1
2 [Egi(t)+Egii(t)+Egiii(t)] (eq. (17)). We denote E ′gi

(t) =
(∑g−1

j=1 Ej(t) Eg−j(t)
)
+277

E g
2
(t2) and have Eg(t) = 1

2[1−U(t)] [E
′
gi

(t) + Egii(t) + Egiii(t)]. From eqs. (20)-(22), Eg(t) is a278

rational function in U(t) and E`(t) for 1 ≤ ` ≤ g − 1, as well as in U(t2) and E`(t2) for279

1 ≤ ` ≤ g − 1.280

I Proposition 7. The generating function Eg(t) for the number of unlabeled galled trees with281

g galls satisfies as t→ ρ−282

Eg(t) ∼ δg

γ4g−1(1− t/ρ)2g−1/2 , (23)283
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where δg is a constant dependent on g satisfying δ1 = 1
2 , and for g ≥ 2,284

δg = 1
2

g−1∑
`=1

[
δ`δg−` + (`+ 1)

∑
d∈C(g−1,`)

∏̀
j=1

δdj

]
. (24)285

Proof. We proceed by induction. The claim holds for g = 1 (Proposition 1) and g = 2286

(eq. (15)), with δ2 = 1
2 [ 1

2
1
2 +2 1

2 ] = 5
8 . We assume inductively that for ` = 1, 2, . . . , g−1, E`(t) ∼287

δ`/[γ4`−1(1− t/ρ)2`−1/2], with constants δ` as in eq. (24). By the inductive hypothesis, the288

convergence radius of E`(t) for each `, 1 ≤ ` ≤ g − 1, is ρ. Because t2 < t for t < ρ, U(t2)289

and E`(t2) can be treated as constants when finding the asymptotic behavior of Eg(t). As a290

result, using the inductive hypothesis, all terms in Eg(t) take the form c/[γm(1− t/ρ)m/2],291

and we must find the terms with the maximal power of 1/
√

1− t/ρ.292

We examine E ′gi
(t), Egiii(t), and then Egii(t). By the inductive hypothesis,293

E ′gi
(t) ∼

g−1∑
j=1

[
δj

γ4j−1(1− t/ρ)2j−1/2 ·
δg−j

γ4(g−j)−1(1− t/ρ)2(g−j)−1/2

]
294

∼
g−1∑
j=1

δjδg−j

γ4g−2(1− t/ρ)2g−1 (25)295

296

297

Egiii(t) ∼
b g−1

2 c∑
`=0

b g−1
2 c∑

b=`

(
1

[1− U(ρ2)]`+1

∑
d∈C(b,`)

∏̀
j=1
Edj (ρ2)

)
δg−1−2b

γ4g−8b−5(1− t/ρ)2g−4b−5/2 .

(26)

298

299

Because the largest power of 1/(1− t/ρ) in Egiii(t) is less than 2g − 1, its largest power in300

E ′gi
(t), Egiii(t) does not affect the asymptotics of Eg(t).301

For Egii(t), for any ` = 1, 2, . . . , g − 1, two quantities determine the power of 1/
√

1− t/ρ:302

both
∑

d∈C(g−1,`)
∏`

j=1 Edj
(t) and [3U(t)− 2 + `]/[1− U(t)]`+2 + [[` = 1]]. First, according303

to the inductive hypothesis, for each `, 1 ≤ ` ≤ g − 1, noting
∑`

j=1 dj = g − 1,304

∑
d∈C(g−1,`)

∏̀
j=1
Edj (t) ∼

∑
d∈C(g−1,`)

∏̀
j=1

δdj

γ4dj−1(1− t/ρ)2dj−1/2305

∼
∑

d∈C(g−1,`)

∏`
j=1 δdj

γ4g−4−`(1− t/ρ)2g−2−`/2 . (27)306

307

Second, for `, 1 ≤ ` ≤ g − 1, from U(t) ∼ 1− γ
√

1− t/ρ,308 (
3U(t)− 2 + `

[1− U(t)]`+2 + [[` = 1]]
)
∼ `+ 1
γ`+2(1− t/ρ)(`+2)/2 . (28)309

Combining eqs. (27) and (28), we obtain310

Egii(t) ∼
g−1∑
`=1

∑
d∈C(g−1,`)

∏`
j=1 δdj

γ4g−4−`(1− t/ρ)2g−2−`/2 ·
`+ 1

γ`+2(1− t/ρ)(`+2)/2311

∼
g−1∑
`=1

(`+ 1)
∑

d∈C(g−1,`)
∏`

j=1 δdj

γ4g−2(1− t/ρ)2g−1 . (29)312

313
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The proof is concluded by noting314

Eg(t) ∼
[

g−1∑
j=1

δjδg−j

γ4g−2(1− t/ρ)2g−1 +
g−1∑
`=1

(`+ 1)
∑

d∈C(g−1,`)
∏`

j=1 δdj

γ4g−2(1− t/ρ)2g−1

]
1

2γ(1− t/ρ)1/2315

∼
∑g−1

`=1
[
δ`δg−` + (`+ 1)

∑
d∈C(g−1,`)

∏`
j=1 δdj

]
2γ4g−1(1− t/ρ)2g−1/2316

∼ δg

γ4g−1(1− t/ρ)2g−1/2 . (30)317

318

J319

I Theorem 8. The asymptotic growth of the number En,g of unlabeled galled trees with n320

leaves and a fixed number of galls g ≥ 1 satisfies321

En,g ∼
δg

γ4g−1Γ(2g − 1
2 )
n2g− 3

2 ρ−n ∼ 22g−1δg

γ4g−1(4g − 3)!!
√
π
n2g− 3

2 ρ−n. (31)322

Proof. The first step follows from the transfer formula. For the second step of eq. (31), we323

recall Γ(n+ 1
2 ) = [(2n− 1)!!/2n]

√
π with and 2g − 1

2 = (2g − 1) + 1
2 . J324

The δg have a relationship with the Catalan numbers, Cm =
(2m

m

)
/(m+ 1).325

I Proposition 9. The numbers {δg}g≥1 satisfy 22g−1δg = C2g−1.326

Proof. We prove the result by showing that the generating functionD(t) =
∑

g≥1 22g−1δgt
2g−1

327

is the odd part of the generating function of the Catalan numbers, CO(t) =
∑

g≥1 C2g−1t
2g−1.328

CO(t) satisfies CO(t) = 1
2
∑

n≥0[Cnt
n − Cn(−t)n] =

∑
n≥1 C2n−1t

2n−1, where C(t) =329

(1−
√

1− 4t)/(2t) is the generating function of the Catalan numbers. Hence, CO(t) =330 [
1− 1

2 (
√

1− 4t+
√

1 + 4t)
]
/(2t). From the recursion for δg (Proposition 7),331

D(t) = t+
∑
g≥2

( g−1∑
`=1

22g−2δ`δg−`

)
t2g−1 +

∑
g≥2

[ g−1∑
`=1

(`+ 1)22g−2
∑

d∈C(g−1,`)

∏̀
j=1

δdj

]
t2g−1

332

= t+
[∑

`≥1
22`−1δ`t

2`−1
∑

g≥`+1
22(g−`)−1δg−`t

2(g−`)−1
]
t333

+
[∑

`≥1
(`+ 1)(2t)`

∑
g≥`+1

∑
d∈C(g−1,`)

∏̀
j=1

22dj−1δdj
t2dj−1

]
t334

= t+ tD2(t) + t
∑
`≥1

(`+ 1)[2tD(t)]`335

= t+ tD2(t) + 2t2D(t)
[1− 2tD(t)]2 + 2t2D(t)

1− 2tD(t) . (32)336

337

Solving for D(t), we obtain four solutions, only one of which has the correct limit of 0 as338

t→ 0; this root is equal to CO(t).339

J340

I Theorem 10. The number of unlabeled galled trees with n leaves and any fixed number of341

galls g ≥ 0 has asymptotic approximation342

En,g ∼
22g−1

(2g)! γ4g−1√π
n2g− 3

2 ρ−n. (33)343
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Table 1 The subexponential portion cgn
2g− 3

2 of the growth cgn
2g− 3

2 ρ−n with the number of
leaves n of En,g, the number of galled trees with exactly g galls. Quantities are computed according
to eq. (2) for g = 0 and Theorems 8 and 10 for g ≥ 1.

Number of Exact Approximate
galls g constant cg value of cg n2g− 3

2

0 γ
2
√
π

0.3188 n−
3
2

1 1
γ3√π 0.3910 n

1
2

2 5
15γ7√π = 8

24γ7√π = 1
3γ7√π 0.0799 n

5
2

3 42
945γ11√π = 32

720γ11√π = 2
45γ11√π 0.0065 n

9
2

4 429
135135γ15√π = 128

40320γ15√π = 1
315γ15√π 2.8638 × 10−4 n

13
2

5 4862
34459425γ19√π = 512

3628800γ19√π = 2
14175γ19√π 7.8062 × 10−6 n

17
2

Proof. The Catalan numbers satisfy Cn = 2n(2n− 1)!!/(n+ 1)!, so that

22g−1δg

(4g − 3)!! = C2g−1

(4g − 3)!! = 22g−1[2(2g − 1)− 1]!!
(4g − 3)!! (2g − 1 + 1)! = 22g−1

(2g)! .

The case of g = 0 is included, as En,0 ∼ [2−1/(γ−1√π)]n− 3
2 ρ−n = [γ/2

√
π]n− 3

2 ρ−n ∼ Un. J344

Table 1 depicts the subexponential growth of En,g for each g from 1 to 5. For g = 1 and345

g = 2, the theorem recovers the values obtained in Propositions 2 and 5.346

I Corollary 11. The exponential growth of the number En,g of unlabeled trees with n leaves347

and a fixed number of galls g ≥ 1 is the same as that of Un, the number of unlabeled trees with348

no galls; however, the subexponential growth is greater by a factor of 4n2/[γ4(2g + 1)(2g + 2)].349

7 Discussion350

We have studied the number of rooted binary unlabeled galled trees with a fixed number of351

galls, analyzing the exponential growth of this quantity as the number of leaves increases.352

We have found that the exponential growth, with the increase in the number of leaves n,353

of the number of galled trees with a fixed number of galls is independent of the number of354

galls g (Corollary 11). This independence includes the case of g = 0 galls, the classic case of355

rooted binary unlabeled trees. It also implies that the number of galled trees whose number356

of galls is in some finite set G also has this same exponential growth.357

The exponential growth with n of the number of galled trees with fixed g or with g in358

a finite set of values contrasts with the much greater increase in An, the number of galled359

trees with no restriction on the number of galls. This much larger growth for An is explained360

by the increase in the subexponential component with increasing g of the number of galled361

trees with n leaves and g galls, and the fact that with no maximum number of galls, as n362

increases, the number of terms in An =
∑b(n−1)/2c

g≥0 En,g grows without bound.363

Our analysis produced a recursion for the Catalan numbers with odd indices: C2n−1 =364 ∑n−1
m=1 C2m−1C2(n−m)−1 +

∑n−1
m=1(m+ 1)2m

∑
d∈C(n−1,m) C2dj−1. The first part comes from365

terms of Cn =
∑n−1

m=0 CmC(n−1)−m with odd m and (n− 1)−m; the second substitutes a366

sum involving Catalan numbers with odd index for terms with even m and (n− 1)−m.367
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The difference across values of g in the growth of the number of trees with exactly g ≥ 0368

galls lies in the subexponential component, cgn
2g− 3

2 . Related problems involving labeled369

phylogenetic networks show this same pattern, in which incrementing a constant associated370

with network complexity does change the subexponential growth but not the exponential371

growth. In particular, this pattern is seen with increasingly many reticulation nodes in372

various network classes [6, 7, 11, 12, 13, 19]; the subexponential growth often includes a373

factor of n2, as in our case. Note additionally that beginning from g = 1, the constant cg in374

the asymptotic approximation for En,g decreases with g (eq. (31), Table 1). This property375

also holds for the labeled normal networks of Fuchs et al. [11, 12, 13].376

The study here deals with the asymptotic enumeration of galled trees when the number377

of galls is fixed. Using the bivariate function A(t, u) =
∑

n≥0
∑

g≥0 En,gt
nug, Section 5.6 of378

our previous study of galled trees showed that for a fixed number of leaves, the number of379

galls follows an asymptotic normal distribution [1, eq. 56]. The marginal analysis fixing the380

number of galls contributes a perspective on the bivariate distribution different from that of381

the previous analysis.382

We comment that we could potentially have derived our generating functions by the383

symbolic method [10]. Our approach instead began with constructive enumeration of possible384

cases, continuing the analysis based on a recursion derived in our previous study of galled385

trees [1] in order to find the generating functions. The symbolic method, which we defer to a386

subsequent article, potentially leads to simpler derivations that enable quick comparisons of387

relationships among enumerations for different types of galled trees.388

By analyzing the asymptotics of En,g for arbitrary g, this work solves unsolved problems389

from [1], who only analyzed En,1 and An =
∑b(n−1)/2c

g≥0 En,g. The analysis has potential to390

assist in other scenarios with unlabeled phylogenetic networks indexed by a fixed quantity.391
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