ON MAXIMA IN GEOMETRIC WORDS THAT SATISFY A GENERALIZED RESTRICTED GROWTH PROPERTY

(joint work with Mehri Javanian)

Michael Fuchs

Institute of Applied Mathematics
National Chiao Tung University

Fuzhou, November 3, 2017
Geometric Words

Words: $\omega_1 \cdots \omega_n$ with $\omega_i \in \mathbb{N}$.
Geometric Words

Words: $\omega_1 \cdots \omega_n$ with $\omega_i \in \mathbb{N}$.

Random model:

ω_i are independent and geometrically distributed with success probability p, i.e.,

$$\mathbb{P}(\omega_i = \ell) = pq^{\ell-1}, \quad \ell \in \mathbb{N},$$

where $q := 1 - p$.
Geometric Words

Words: $\omega_1 \cdots \omega_n$ with $\omega_i \in \mathbb{N}$.

Random model:

ω_i are independent and geometrically distributed with success probability p, i.e.,

$$\mathbb{P}(\omega_i = \ell) = pq^{\ell-1}, \quad \ell \in \mathbb{N},$$

where $q := 1 - p$.

Such words are called geometric words.
Geometric Words

Words: $\omega_1 \cdots \omega_n$ with $\omega_i \in \mathbb{N}$.

Random model:

ω_i are independent and geometrically distributed with success probability p, i.e.,

$$P(\omega_i = \ell) = pq^{\ell-1}, \quad \ell \in \mathbb{N},$$

where $q := 1 - p$.

Such words are called geometric words.

Studied because related to:

- Approximate counting;
- Digital trees
(Some) Previous Work

Left-to-right maxima

Maximum value
Bruss & O'Cinneide (1990); Eisenberg (2008); Prodinger (2012)

of times the maximum occurs
Kirschenhofer & Prodinger (1998)

Other parameters:
of different letters, missing letters, gaps, inversion, ascends and descends, runs, etc.
(Some) Previous Work

- **Left-to-right maxima**

(Some) Previous Work

- **Left-to-right maxima**

- **Maximum value**

 Bruss & O’Cinneide (1990); Eisenberg (2008); Prodinger (2012)
(Some) Previous Work

- **Left-to-right maxima**

- **Maximum value**

 Bruss & O’Cinneide (1990); Eisenberg (2008); Prodinger (2012)

- **# of times the maximum occurs**

 Kirschenhofer & Prodinger (1998)
(Some) Previous Work

- **Left-to-right maxima**

- **Maximum value**

 Bruss & O’Cinneide (1990); Eisenberg (2008); Prodinger (2012)

- **# of times the maximum occurs**

 Kirschenhofer & Prodinger (1998)

Other parameters: **# of different letters, missing letters, gaps, inversion, ascends and descends, runs, etc.**
Left-to-Right Maxima

\[L_n = \# \text{ of left-to-right maxima of a geometric word.} \]
\[Q := 1/q. \]
Left-to-Right Maxima

$L_n = \# \text{ of left-to-right maxima of a geometric word.}$

$Q := 1/q.$

Theorem (Prodinger; 1996)

We have,

$$
\mathbb{E}(L_n) \sim p \log_Q n + \Phi_1(\log_Q n) \quad \text{and} \quad \text{Var}(L_n) \sim pq \log_Q n + \Phi_2(\log_Q n),
$$

where Φ_1, Φ_2 are 1-periodic functions.
Left-to-Right Maxima

\(L_n = \# \) of left-to-right maxima of a geometric word.
\(Q := 1/q. \)

Theorem (Prodinger; 1996)

We have,

\[
\mathbb{E}(L_n) \sim p \log_q n + \Phi_1(\log_q n) \quad \text{and} \quad \text{Var}(L_n) \sim pq \log_q n + \Phi_2(\log_q n),
\]

where \(\Phi_1, \Phi_2 \) are 1-periodic functions.

Theorem (Bai & Hwang & Liang; 1998)

We have,

\[
\frac{L_n - p \log_q n}{\sqrt{pq \log_q n}} \xrightarrow{d} N(0, 1).
\]
Geometric Words satisfying GRGP

ω = ω₁ · · · ωₙ.
Geometric Words satisfying GRGP

\(\omega = \omega_1 \cdots \omega_n. \)

\(\omega \) satisfies **generalized restricted growth property** (GRGP):

\[\omega_i \leq d + \max\{\omega_0, \ldots, \omega_{i-1}\} \quad \text{with} \quad \omega_0 := 0 \]

and \(d \geq 1. \)
Geometric Words satisfying GRGP

\(\omega = \omega_1 \cdots \omega_n. \)

\(\omega \) satisfies \textbf{generalized restricted growth property (GRGP)}:

\[
\omega_i \leq d + \max\{\omega_0, \ldots, \omega_{i-1}\} \quad \text{with} \quad \omega_0 := 0
\]

and \(d \geq 1. \)

\(L_n^{(d)} = \# \) of left-to-right maxima of a geometric word satisfying GRGP.
Geometric Words satisfying GRGP

\[\omega = \omega_1 \cdots \omega_n. \]

\(\omega \) satisfies **generalized restricted growth property** (GRGP):

\[\omega_i \leq d + \max\{\omega_0, \ldots, \omega_{i-1}\} \quad \text{with} \quad \omega_0 := 0 \]

and \(d \geq 1 \).

\(L_n^{(d)} = \# \) of left-to-right maxima of a geometric word satisfying GRGP.

\(d = 1 \):

- 1-to-1 correspondence with set partitions:

 \[\{\{2, 7\}, \{1, 3, 4\}, \{5, 6\}\} \quad \longrightarrow \quad \omega = 1211332 \]
Geometric Words satisfying GRGP

\[\omega = \omega_1 \cdots \omega_n. \]

\(\omega \) satisfies \textbf{generalized restricted growth property} (GRGP):

\[\omega_i \leq d + \max\{\omega_0, \ldots, \omega_{i-1}\} \quad \text{with} \quad \omega_0 := 0 \]

and \(d \geq 1 \).

\[L^{(d)}_n = \# \text{ of left-to-right maxima of a geometric word satisfying GRGP.} \]

\(d = 1 \):

- 1-to-1 correspondence with set partitions:

\[\{\{2, 7\}, \{1, 3, 4\}, \{5, 6\}\} \quad \rightarrow \quad \omega = 1211332 \]

- \(L^{(1)}_n = \text{maximum value} = \# \text{ of blocks} \)
Distribution of $L^{(d)}_n$

We have,

$$p_{n+1,k} = \sum_{\ell=1}^d pq_{\ell-1} \sum_{j=0}^n \binom{n}{j} (1-q_{\ell})^{n-j} q_{\ell j}^{p_{j,k}-1}.$$

Then,

$$P(L^{(d)}_n = k) = \frac{p_{n,k}}{\sum_{k} p_{n,k}}.$$

Goal: find asymptotics of moment generating function

$$E(e^{t L^{(d)}_n}) = \sum_{k} P(L^{(d)}_n = k) e^{kt}$$

in a complex neighbourhood of 0.
Distribution of $L_n^{(d)}$

$p_{n,k} = \text{probability that a word satisfying GRGP has } k \text{ left-to-right maxima}$
Distribution of $L_n^{(d)}$

$p_{n,k} = \text{probability that a word satisfying GRGP has } k \text{ left-to-right maxima}$

We have,

$$p_{n+1,k} = \sum_{\ell=1}^{d} pq^{\ell-1} \sum_{j=0}^{n} \left(\begin{array}{c} n \\ j \end{array} \right) (1 - q^\ell)^{n-j} q^{\ell j} p_{j,k-1}. $$
Distribution of $L_n^{(d)}$

$p_{n,k} = \text{probability that a word satisfying GRGP has } k \text{ left-to-right maxima}$

We have,

$$p_{n+1,k} = \sum_{\ell=1}^{d} pq^{\ell-1} \sum_{j=0}^{n} \binom{n}{j} (1 - q^{\ell})^{n-j} q^{\ell j} p_{j,k-1}.$$

Then,

$$\mathbb{P} \left(L_n^{(d)} = k \right) = \frac{p_{n,k}}{\sum_k p_{n,k}}.$$
Distribution of $L_n^{(d)}$

$p_{n,k} =$ probability that a word satisfying GRGP has k left-to-right maxima

We have,

$$p_{n+1,k} = \sum_{\ell=1}^{d} pq^{\ell-1} \sum_{j=0}^{n} \binom{n}{j} (1 - q^\ell)^{n-j} q^\ell j p_{j,k-1}.$$

Then,

$$\mathbb{P} \left(L_n^{(d)} = k \right) = \frac{p_{n,k}}{\sum_k p_{n,k}}.$$

Goal: find asymptotics of moment generating function

$$\mathbb{E} \left(e^{L_n^{(d)} t} \right) = \sum_k \mathbb{P} \left(L_n^{(d)} = k \right) e^{kt}$$

in a complex neighbourhood of 0.
Asymptotics of Moment Generating Function (i)

Set

\[\tilde{L}(z, t) := e^{-z} \sum_{n} \sum_{k} p_{n,k} e^{kt} \frac{z^n}{n!}. \]
Asymptotics of Moment Generating Function (i)

Set

\[\tilde{L}(z, t) := e^{-z} \sum_n \sum_k p_{n,k} e^{kt} \frac{z^n}{n!}. \]

Then,

\[\tilde{L}(z, t) + \frac{\partial}{\partial z} \tilde{L}(z, t) = pe^t \sum_{\ell=1}^d q^{\ell-1} \tilde{L}(q^\ell z, t). \]
Asymptotics of Moment Generating Function (i)

Set
\[\tilde{L}(z, t) := e^{-z} \sum_n \sum_k p_{n,k} e^{kt} \frac{z^n}{n!}. \]

Then,
\[\tilde{L}(z, t) + \frac{\partial}{\partial z} \tilde{L}(z, t) = pe^t \sum_{\ell=1}^d q^{\ell-1} \tilde{L}(q^\ell z, t). \]

Can be solved with the **Mellin transform**:

\[\mathcal{M}[\tilde{f}(z); \omega] := \int_0^\infty \tilde{f}(z) z^{\omega-1} dz \]

because of
\[\mathcal{M}[\tilde{f}(az); \omega] = a^{-\omega} \mathcal{M}[\tilde{f}(z); \omega]. \]
Converse Mapping Theorem

Theorem (Flajolet, Gourdon, Dumas; 1995)

Let the Mellin transform of $\tilde{f}(z)$ exist in the strip $\langle \alpha, \beta \rangle$.

Assume that $\mathcal{M}[\tilde{f}(z); s]$ can be continued to a meromorphic function on $\langle \alpha, \gamma \rangle$ with $\beta < \gamma$ with simple poles at s_1, \cdots, s_k.

Then, under some technical conditions,

$$\tilde{f}(z) = - \sum_{j=1}^{k} \text{Res}(\mathcal{M}[\tilde{f}(z); s], s = s_j) z^{-s_j} + O(z^{-\gamma})$$

as $z \to \infty$.
Applying the converse mapping theorem gives:

\[\tilde{L}(z, t) \sim -\frac{P_t(1)\Omega_t(1)}{\log(Q)\rho_t P'_t(\rho_t)\Omega_t(\rho_t)} z^{-\log Q \rho_t} \sum_k \Gamma(\log Q \rho_t + \chi_k) z^{-\chi_k}, \]

where \(\chi_k = \frac{2k\pi i}{\log(Q)} \) and \(P_t(z) = 1 - pe^{td} \sum_{\ell=1} q^\ell - 1 z^\ell, \)

\(\Omega_t(s) = \prod_{\ell \geq 1} P_t(q_s), \)

and \(\rho_t \) is the unique positive root of \(P_t(z) \).

Finally, note that \(\tilde{L}(n, t) = e^{-n} \sum_{m} \sum_{k} p_{m,k} e^{kt} n^m \approx \sum_{k} p_{n,k} e^{kt} \) ... Poisson heuristic
Applying the converse mapping theorem gives:

$$
\tilde{L}(z, t) \sim -\frac{P_t(1)\Omega_t(1)}{\log(Q)\rho_t P'_t(\rho_t)\Omega_t(\rho_t)} z^{-\log Q \rho_t} \sum_k \Gamma(\log Q \rho_t + \chi_k) z^{-\chi_k},
$$

where $\chi_k = 2k\pi i / \log(Q)$ and

$$
P_t(z) = 1 - pe^t \sum_{\ell=1}^d q^{\ell-1} z^\ell, \quad \Omega_t(s) = \prod_{\ell \geq 1} P_t(q^\ell s)
$$

and ρ_t is the unique positive root of $P_t(z)$.
Asymptotics of Moment Generating Function (ii)

Applying the converse mapping theorem gives:

$$\tilde{L}(z, t) \sim -\frac{P_t(1)\Omega_t(1)}{\log(Q)\rho_t P'_t(\rho_t)\Omega_t(\rho_t)} z^{-\log\rho_t} \sum_k \Gamma(\log\rho_t + \chi_k) z^{-\chi_k},$$

where $\chi_k = 2k\pi i / \log(Q)$ and

$$P_t(z) = 1 - pe^t \sum_{\ell=1}^d q^\ell-1 z^\ell, \quad \Omega_t(s) = \prod_{\ell \geq 1} P_t(q^\ell s)$$

and ρ_t is the unique positive root of $P_t(z)$.

Finally, note that

$$\tilde{L}(n, t) = e^{-n} \sum_m \sum_k p_{m,k} e^{kt} \frac{n^m}{m!} \sim \sum_k p_{n,k} e^{kt} \ldots \text{Poisson heuristic!}$$
Proposition

Uniformly in a neighbourhood of 0,

\[
\mathbb{E} \left(e^{L_n^{(d)} t} \right) \sim \frac{P_t(1) \Omega_t(1) \rho_0 P'_0(\rho_0) \Omega_0(\rho_0)}{q^d \Omega_0(1) \rho_t P'_t(\rho_t) \Omega_t(\rho_t)} n^{-\log Q(\rho_t/\rho_0)} \\
\times \frac{\sum_k \Gamma(\log Q \rho_t + \chi_k) n^{-\chi_k}}{\sum_k \Gamma(\log Q \rho_0 + \chi_k) n^{-\chi_k}}.
\]
Asymptotic of Moment Generating Function (iii)

Proposition

Uniformly in a neighbourhood of 0,

\[
\mathbb{E}\left(e^{L_n^{(d)} t}\right) \sim \frac{P_t(1)\Omega_t(1)\rho_0 P'_0(\rho_0)\Omega_0(\rho_0)}{q^d\Omega_0(1)\rho_t P'_t(\rho_t)\Omega_t(\rho_t)} n^{-\log Q(\rho_t/\rho_0)}
\]

\[
\times \frac{\sum_k \Gamma(\log Q \rho_t + \chi_k)n^{-\chi_k}}{\sum_k \Gamma(\log Q \rho_0 + \chi_k)n^{-\chi_k}}.
\]

Corollary

For \(m \geq 1, *

\[
\mathbb{E}(L_n^{(1)} - \log_Q n)^m \sim \Phi_m^{(1)}(\log_Q n),
\]

where \(\Phi_m^{(1)} *are 1-periodic functions.*
Theorem

$L_n^{(1)} - \log Q_n$ does not converge to a fixed limit law.
Limit Law of $L_n^{(d)}$

Theorem

$L_n^{(1)} - \log Q_n$ does not converge to a fixed limit law.

Theorem

We have,

$$
L_n^{(d)} + \frac{\log Q_n / (\rho_0 P'_0(\rho_0))}{\sqrt{\log Q_n}} \xrightarrow{d} N(0, \sigma^2_d),
$$

for a constant σ^2_d which is > 0 iff $d \geq 2$.
Limit Law of $L_n^{(d)}$

Theorem

$L_n^{(1)} - \log Q n$ does not converge to a fixed limit law.

Theorem

We have,

$$L_n^{(d)} + \frac{\log Q n / \left(\rho_0 P'_0(\rho_0) \right)}{\sqrt{\log Q n}} \xrightarrow{d} N(0, \sigma_d^2),$$

for a constant σ_d^2 which is > 0 iff $d \geq 2$.

Thus, the limit law of $L_n^{(d)}$ undergoes a phase change from non-existence for $d = 1$ to normal for $d \geq 2$!
Maximum Value (i)

$$M_n^{(d)} = \text{maximum value of a geometric word satisfying GRGP.}$$
Maximum Value (i)

\[M_n^{(d)} = \text{maximum value of a geometric word satisfying GRGP.} \]

\[d = 1: \ M_n^{(1)} = L_n^{(1)}. \]
Maximum Value (i)

\[M_n^{(d)} = \text{maximum value of a geometric word satisfying GRGP}. \]

\[d = 1: \ M_n^{(1)} = L_n^{(1)}. \]

Question: does the limit law of \(M_n^{(d)} \) also undergo a phase change?
Maximum Value (i)

\[M_n^{(d)} = \text{maximum value of a geometric word satisfying GRGP}. \]

\[d = 1: \ M_n^{(1)} = L_n^{(1)}. \]

Question: does the limit law of \(M_n^{(d)} \) also undergo a phase change?

Theorem

For \(m \geq 1 \),

\[\mathbb{E}(M_n^{(d)} - \log Q n)^m \sim \Phi_m^{(d)}(\log Q n), \]

where \(\Phi_m^{(d)} \) is a 1-periodic function.

Thus, \(M_n^{(d)} - \log Q n \) does not converge to a fixed limit law.
Maximum Value (i)

\[M_n^{(d)} = \text{maximum value of a geometric word satisfying GRGP}. \]

\[d = 1: \ M_n^{(1)} = L_n^{(1)}. \]

Question: does the limit law of \(M_n^{(d)} \) also undergo a phase change?

Theorem

For \(m \geq 1 \),

\[\mathbb{E}(M_n^{(d)} - \log Q_n)^m \sim \Phi_m^{(d)}(\log Q_n), \]

where \(\Phi_m^{(d)} \) is a 1-periodic function.

Thus, \(M_n^{(d)} - \log Q_n \) does not converge to a fixed limit law.

Answer to above question is NO!
Maximum Value (ii)

$q_{n,k} = \text{probability that a word satisfying GRGP has maximum value } k$.
Maximum Value (ii)

$q_{n,k} = \text{probability that a word satisfying GRGP has maximum value } k$. We have,

$$q_{n+1,k} = \sum_{\ell=1}^{d} q \ell^{-1} \sum_{j=0}^{n} \binom{n}{j} (1 - q^\ell)^{n-j} q^\ell j q_{j,k-\ell}.$$
Maximum Value (ii)

$q_{n,k} = \text{probability that a word satisfying GRGP has maximum value } k$.

We have,

$$q_{n+1,k} = \sum_{\ell=1}^{d} qp^{\ell-1} \sum_{j=0}^{n} \binom{n}{j} (1 - q^\ell)^{n-j} q^\ell q_{j,k-\ell}.$$

With the same method as before:

Proposition

Uniformly in a neighbourhood of 0,

$$\mathbb{E}\left(e^{M_{n}^{(d)} t}\right) \sim \frac{P_0(e^t)\Omega_0(e^t)}{q^d\Omega_0(1)} n^{t/\log Q} \frac{\sum_{k} \Gamma(\log Q \rho_0 - t/\log Q + \chi_k) n^{-\chi_k}}{\sum_{k} \Gamma(\log Q \rho_0 + \chi_k) n^{-\chi_k}}.$$
Size of Block containing Largest Element

\[N_n = \# \text{ of occurrences of maximum value} \]
Size of Block containing Largest Element

\[N_n = \# \text{ of occurrences of maximum value} \]
\[= \text{size of block containing largest element.} \]
Size of Block containing Largest Element

\[N_n = \# \text{ of occurrences of maximum value} \]
\[= \text{size of block containing largest element.} \]

Question: does \(N_n \) converge to a limit law?
Size of Block containing Largest Element

\[N_n = \# \text{ of occurrences of maximum value} \]
\[= \text{size of block containing largest element}. \]

Question: does \(N_n \) converge to a limit law?

Theorem

For \(m \geq 1 \),

\[\mathbb{E}(N_n^m) \sim \Psi_m(\log_Q n), \]

where \(\Psi_m \) are 1-periodic functions.

Thus, \(N_n \) does not converge to a limit law.
Size of Block containing Largest Element

\[N_n = \# \text{ of occurrences of maximum value} \]
\[= \text{size of block containing largest element.} \]

Question: does \(N_n \) converge to a limit law?

Theorem

For \(m \geq 1 \),

\[\mathbb{E}(N_n^m) \sim \Psi_m(\log_Q n), \]

where \(\Psi_m \) *are* 1-*periodic functions.*

Thus, \(N_n \) *does not converge to a limit law.*

Answer to above question is again NO!
Summary

Seventh Cross-straight Conference on Combinatorics and Graph Theory:

$$\mathbb{E}(L_n^{(1)}) = \mathbb{E}(M_n^{(1)}) \sim \log Q n + \Phi_1^{(1)}(\log Q n).$$

I listed results for higher moments and limit laws as open problem.
Summary

Seventh Cross-straight Conference on Combinatorics and Graph Theory:

\[\mathbb{E}(L_n^{(1)}) = \mathbb{E}(M_n^{(1)}) \sim \log_Q n + \Phi_1^{(1)}(\log_Q n). \]

I listed results for higher moments and limit laws as open problem.

These open problem were solved by F. & Javanian (2015):

<table>
<thead>
<tr>
<th>parameter</th>
<th>(m)-th central moments</th>
<th>limit law</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_n^{(d)})</td>
<td>(\begin{cases} d = 1 : \text{periodic} \ d \geq 2 : \Theta((\log n)^{m/2}) \end{cases})</td>
<td>(\begin{cases} d = 1 : \text{does not exist} \ d \geq 2 : \text{normal} \end{cases})</td>
</tr>
<tr>
<td>(M_n^{(d)})</td>
<td>periodic for all (d \geq 1)</td>
<td>does not exist for all (d \geq 1)</td>
</tr>
<tr>
<td>(N_n)</td>
<td>periodic</td>
<td>does not exist</td>
</tr>
</tbody>
</table>