HEIGHT AND SATURATION LEVEL OF RANDOM DIGITAL TREES

(joint with M. Drmota, H.-K. Hwang and R. Neininger)

Michael Fuchs

Department of Mathematical Sciences National Chengchi University

August 21st, 2019

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Name from the word data retrieval (suggested by Fredkin).

3

< □ > < □ > < □ > < □ > < □ > < □ >

Name from the word data retrieval (suggested by Fredkin).

Example:

< □ > < □ > < □ > < □ > < □ > < □ >

3

Name from the word data retrieval (suggested by Fredkin).

Example:

(4) (日本)

3

Name from the word data retrieval (suggested by Fredkin).

Example:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Name from the word data retrieval (suggested by Fredkin).

Example:

< 47 ▶

э

< ∃⇒

Name from the word data retrieval (suggested by Fredkin).

Example:

< (T) >

э

→ ∃ →

Tries

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

< (T) >

э

→ ∃ →

Tries

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

< 1 k

PATRICIA Tries

Proposed by Donald R. Morrison in 1968.

PATRICIA=Practical Algorithm To Retrieve Information Coded In Alphanumeric

3

< □ > < □ > < □ > < □ > < □ > < □ >

PATRICIA Tries

Proposed by Donald R. Morrison in 1968.

PATRICIA=Practical Algorithm To Retrieve Information Coded In Alphanumeric

э

-

PATRICIA Tries

Proposed by Donald R. Morrison in 1968.

PATRICIA=Practical Algorithm To Retrieve Information Coded In Alphanumeric

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

3

(日) (四) (日) (日) (日)

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

< □ > < □ > < □ > < □ > < □ > < □ >

3

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

・ 何 ト ・ ヨ ト ・ ヨ ト

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

< A >

4 E b

Proposed by Edward G. Coffman and James Eve in 1970.

Closely related to the Lempel-Ziv compression scheme.

Example:

< A >

3. 3

Bits are generated by independent Bernoulli random variables with mean p

 \longrightarrow Bernoulli model

3

(日) (四) (日) (日) (日)

Bits are generated by independent Bernoulli random variables with mean p

 \longrightarrow Bernoulli model

Two types of digital trees:

- p = 1/2: symmetric digital trees;
- $p \neq 1/2$: asymmetric digital trees.

3

- 4 回 ト 4 ヨ ト 4 ヨ ト

Bits are generated by independent Bernoulli random variables with mean \boldsymbol{p}

 \longrightarrow Bernoulli model

Two types of digital trees:

- p = 1/2: symmetric digital trees;
- $p \neq 1/2$: asymmetric digital trees.

Question: What can be said about the "shape" of the tree?

(4) (日本)

Bits are generated by independent Bernoulli random variables with mean \boldsymbol{p}

 \longrightarrow Bernoulli model

Two types of digital trees:

- p = 1/2: symmetric digital trees;
- $p \neq 1/2$: asymmetric digital trees.

Question: What can be said about the "shape" of the tree?

This question is important because its answer will shed light on the complexity of algorithms performed on digital trees.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $H_n =$ longest path to a leaf;
- $S_n =$ shortest path to a leaf;
- F_n = saturation (or fill-up) level;

イロト イポト イヨト イヨト

- $H_n =$ longest path to a leaf;
- $S_n =$ shortest path to a leaf;
- F_n = saturation (or fill-up) level;

Example:

- $H_n =$ longest path to a leaf;
- $S_n =$ shortest path to a leaf;
- F_n = saturation (or fill-up) level;

Example:

< 1 k

- $H_n =$ longest path to a leaf;
- $S_n =$ shortest path to a leaf;
- F_n = saturation (or fill-up) level;

Example:

 $H_n = 4;$

 $S_n = 2;$

< A > < E

3

→ ∃ →

- $H_n =$ longest path to a leaf;
- $S_n =$ shortest path to a leaf;
- F_n = saturation (or fill-up) level;

Example:

 $H_n = 4;$

$$S_n = 2;$$

 $F_n = 1.$

3

< ∃⇒

Results for Tries (i)

Flajolet (1983):

Theorem

For symmetric tries,

$$\mathbb{P}(H_n \le k) \to e^{-e^{-t}},$$

where k and n tend to infinity such that $\log(2^{k+1}/n^2) \rightarrow t$.

イロト 不得 トイヨト イヨト 二日

Results for Tries (i)

Flajolet (1983):

Theorem

For symmetric tries,

$$\mathbb{P}(H_n \le k) \to e^{-e^{-t}},$$

where k and n tend to infinity such that $\log(2^{k+1}/n^2) \rightarrow t$.

This shows that the "limit distribution" of the height is a **Gumbel** distribution.

イロト 不得下 イヨト イヨト 二日

Results for Tries (i)

Flajolet (1983):

Theorem

For symmetric tries,

$$\mathbb{P}(H_n \le k) \to e^{-e^{-t}},$$

where k and n tend to infinity such that $\log(2^{k+1}/n^2) \rightarrow t$.

This shows that the "limit distribution" of the height is a **Gumbel distribution**.

The above result was generalized to asymmetric tries by Pittel (with a probabilistic approach) and Jacquet & Règnier (with a complex-analytic approach) in 1986.

イロト 不得 トイラト イラト 一日

Results for Tries (ii)

Theorem (Pittel; 1986)

Let $p \ge q$. The distribution of S_n is concentrated on two points:

$$\mathbb{P}(S_n = k_S \text{ or } k_S + 1) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.$$

Here, k_S is a sequence of n which satisfies

$$k_S = \begin{cases} \log_2 n - \log_2 \log n + \mathcal{O}(1), & \text{if } p = q; \\ \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1), & \text{if } p \neq q. \end{cases}$$

イロト イポト イヨト イヨト 二日

Results for Tries (ii)

Theorem (Pittel; 1986)

Let $p \ge q$. The distribution of S_n is concentrated on two points:

$$\mathbb{P}(S_n = k_S \text{ or } k_S + 1) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.$$

Here, k_S is a sequence of n which satisfies

$$k_S = \begin{cases} \log_2 n - \log_2 \log n + \mathcal{O}(1), & \text{if } p = q; \\ \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1), & \text{if } p \neq q. \end{cases}$$

Theorem (Hwang & Nicodème & Park & Szpankowski; 2006) *We have,*

$$\mathbb{P}(F_n = S_n - 1) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.$$

Michael Fuchs (NCCU)

- 31

イロト イボト イヨト イヨト

External and Internal Node Profile

 $B_{n,k}$ = number of external nodes at level k;

 $I_{n,k}$ = number of internal nodes at level k.

イロト 不得 トイラト イラト 一日

External and Internal Node Profile

 $B_{n,k}$ = number of external nodes at level k;

 $I_{n,k}$ = number of internal nodes at level k.

Example:

-47 ▶
External and Internal Node Profile

 $B_{n,k}$ = number of external nodes at level k;

 $I_{n,k}$ = number of internal nodes at level k.

Example:

$$B_{6,0} = 0;$$

 $B_{6,1} = 0;$
 $B_{6,2} = 1;$
 $B_{6,3} = 1;$
 $B_{6,4} = 4;$

External and Internal Node Profile

 $B_{n,k}$ = number of external nodes at level k;

 $I_{n,k}$ = number of internal nodes at level k.

Example:

$B_{6,0} = 0;$	$I_{6,0} = 1;$
$B_{6,1} = 0;$	$I_{6,1} = 2;$
$B_{6,2} = 1;$	$I_{6,2} = 2;$
$B_{6,3} = 1;$	$I_{6,3} = 2;$
$B_{6,4} = 4;$	$I_{6,4} = 0;$

-47 ▶

э

H_n, S_n, F_n and the Profile of Tries

$$H_n = \max\{k : B_{n,k} > 0\};$$

$$S_n = \min\{k : B_{n,k} > 0\};$$

$$F_n = \max\{k : I_{n,k} = 2^k\}.$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

H_n, S_n, F_n and the Profile of Tries

$$H_n = \max\{k : B_{n,k} > 0\};$$

$$S_n = \min\{k : B_{n,k} > 0\};$$

$$F_n = \max\{k : I_{n,k} = 2^k\}.$$

So, for instance, we have

and

$$S_n > k \implies B_{n,k} = 0$$

$$S_n < k \implies B_{n,\ell} > 0$$
 for some $\ell < k$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

H_n, S_n, F_n and the Profile of Tries

$$H_n = \max\{k : B_{n,k} > 0\};$$

$$S_n = \min\{k : B_{n,k} > 0\};$$

$$F_n = \max\{k : I_{n,k} = 2^k\}.$$

So, for instance, we have

$$S_n > k \implies B_{n,k} = 0$$

and

$$S_n < k \implies B_{n,\ell} > 0$$
 for some $\ell < k$

and thus

$$\mathbb{P}(S_n > k) \le \mathbb{P}(B_{n,k} = 0) \qquad \text{and} \qquad \mathbb{P}(S_n < k) \le \sum_{\ell=0}^{k-1} \mathbb{P}(B_{n,\ell} > 0).$$

First and Second Moment Method

Theorem

Let X be a non-negative, integer-valued random variable. Then,

 $\mathbb{P}(X > 0) \le \mathbb{E}(X).$

and

$$\mathbb{P}(X=0) \le \frac{\operatorname{Var}(X)}{(\mathbb{E}(X))^2}.$$

イロト 不得下 イヨト イヨト 二日

First and Second Moment Method

Theorem

Let X be a non-negative, integer-valued random variable. Then,

 $\mathbb{P}(X > 0) \le \mathbb{E}(X).$

and

$$\mathbb{P}(X=0) \le \frac{\operatorname{Var}(X)}{(\mathbb{E}(X))^2}.$$

Thus,

$$\mathbb{P}(S_n > k) \le \frac{\operatorname{Var}(B_{n,k})}{(\mathbb{E}(B_{n,k}))^2}$$

and

$$\mathbb{P}(S_n < k) \le \sum_{\ell=0}^{k-1} \mathbb{E}(B_{n,\ell}).$$

Michael Fuchs (NCCU)

Profile of Tries (Hwang et al.; 2006)

Let $p \ge q$ and

$$\alpha_1 := \frac{1}{\log(1/q)}, \ \alpha_2 := \frac{p^2 + q^2}{p^2 \log(1/p) + q^2 \log(1/q)}, \ \alpha_3 := \frac{2}{\log(1/(p^2 + q^2))}$$

and

$$\rho := \frac{1}{\log(p/q)} \log\left(\frac{1-\alpha\log(1/p)}{\alpha\log(1/q)-1}\right) \qquad \text{with } \alpha = \lim_n (k/\log n).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Profile of Tries (Hwang et al.; 2006)

Let $p\geq q$ and

$$\alpha_1 := \frac{1}{\log(1/q)}, \ \alpha_2 := \frac{p^2 + q^2}{p^2 \log(1/p) + q^2 \log(1/q)}, \ \alpha_3 := \frac{2}{\log(1/(p^2 + q^2))}$$

and

$$\rho := \frac{1}{\log(p/q)} \log\left(\frac{1 - \alpha \log(1/p)}{\alpha \log(1/q) - 1}\right) \qquad \text{with } \alpha = \lim_n (k/\log n).$$

Then,

$$\frac{\log \mathbb{E}(B_{n,k})}{\log n} \to \begin{cases} 0, & \text{if } \alpha \leq \alpha_1; \\ -\rho + \alpha \log(p^{-\rho} + q^{-\rho}), & \text{if } \alpha_1 \leq \alpha \leq \alpha_2; \\ 2 + \alpha \log(p^2 + q^2), & \text{if } \alpha_2 \leq \alpha \leq \alpha_3; \\ 0, & \text{if } \alpha \geq \alpha_3 \end{cases}$$

and $\operatorname{Var}(B_{n,k}) = \Theta(\mathbb{E}(B_{n,k})).$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

Concentration of Saturation Level and Height

Saturation Level:

Trees	p = q?	Concentration	Reference
Tries	$0 2 points$		HNPS2006
DSTs	$p = \frac{1}{2}$	2 points	DFHN2019+
	$p \neq \frac{1}{2}$	at most 3 points	DF2019+
PATRICIA Tries	0	2 points	HNPS2006

イロト 不得 トイヨト イヨト 二日

Concentration of Saturation Level and Height

Saturation Level:

Trees	p = q?	Concentration	Reference
Tries	$0 2 points$		HNPS2006
DSIs 1	$p = \frac{1}{2}$	2 points	DFHN2019+
	$p \neq \frac{1}{2}$	at most 3 points	DF2019+
PATRICIA Tries	0	2 points	HNPS2006

Height:

Trees	p = q?	Concentration	Reference
Tries	0	no	F1983; P1986; JR1986
DSTs	$p = \frac{1}{2}$	2 points	DFHN2019+
	$p \neq \frac{1}{2}$?	DF2019+
PATRICIA Tries	$p = \frac{1}{2}$	3 points	Conjectured by KS2002
	$p \neq \frac{1}{2}$?	?

Michael Fuchs (NCCU)

イロト 不得 トイヨト イヨト 二日

Profile of Symmetric DSTs: Mean

Let

$$Q(z) = \prod_{\ell=1}^{\infty} \left(1 - z 2^{-\ell} \right), \qquad Q_n = \prod_{\ell=1}^n \left(1 - 2^{-\ell} \right) = \frac{Q(2^{-n})}{Q(1)}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Profile of Symmetric DSTs: Mean

Let

$$Q(z) = \prod_{\ell=1}^{\infty} \left(1 - z 2^{-\ell} \right), \qquad Q_n = \prod_{\ell=1}^n \left(1 - 2^{-\ell} \right) = \frac{Q(2^{-n})}{Q(1)}.$$

Theorem (Drmota & F. & Hwang & Neininger; 2019+) We have,

$$\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1),$$

where F(x) is the positive function

$$F(x) = \sum_{j \ge 0} \frac{(-1)^j 2^{-\binom{j}{2}}}{Q_j Q(1)} e^{-2^j x}$$

э

・ロト ・四ト ・ヨト ・ヨト

Profile of Symmetric DSTs: F(x) (i)

As $x \to \infty$,

$$F(x) = \frac{e^{-x}}{Q(1)} + \mathcal{O}(e^{-2x})$$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Profile of Symmetric DSTs: F(x) (i)

As $x \to \infty$,

$$F(x) = \frac{e^{-x}}{Q(1)} + \mathcal{O}(e^{-2x})$$

and as $x \to 0$,

$$F(x) \sim \frac{X^{1/\log 2}}{\sqrt{2\pi x}} \exp\left(-\frac{(\log(X\log X))^2}{2\log 2} - \sum_{j\in\mathbb{Z}} c_j (X\log X)^{-\chi_j}\right),$$

where $X = 1/(x \log 2)$, $\chi_j = 2j\pi i/\log 2$,

$$c_0 = \frac{\log 2}{12} + \frac{\pi^2}{6\log 2}$$

and

$$c_j = \frac{1}{2j\sinh(2j\pi^2/\log 2)}, \qquad (j \neq 0).$$

イロト 不得下 イヨト イヨト 二日

Profile of Symmetric DSTs: F(x) (ii)

Michael Fuchs (NCCU)

Profile of Symmetric DSTs: Variance

Theorem (Drmota & F. & Hwang & Neininger; 2019+) We have,

$$\operatorname{Var}(B_{n,k}) = 2^k G(n/2^k) + \mathcal{O}(1),$$

where G(x) is a function with

$$G(x) = \frac{e^{-x}}{Q(1)} + \mathcal{O}(xe^{-2x}), \qquad (x \to \infty)$$

and

$$G(x) \sim 2F(x), \qquad (x \to 0).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Profile of Symmetric DSTs: G(x) (i)

We have,

$$G(x) = \sum_{j,r=0}^{\infty} \sum_{0 \le h, \ell \le j} \frac{2^{-j} (-1)^{r+h+\ell} 2^{-\binom{r}{2} - \binom{h}{2} - \binom{\ell}{2} + 2h+2\ell}}{Q_r Q(1) Q_h Q_{j-h} Q_\ell Q_{j-\ell}} \varphi(2^{r+j}, 2^h + 2^\ell; x),$$

where

$$\varphi(u,v;x) = \begin{cases} \frac{e^{-ux} - ((v-u)x+1)e^{-vx}}{(v-u)^2}, & \text{if } u \neq v; \\ x^2 e^{-ux}/2, & \text{if } u = v. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Profile of Symmetric DSTs: G(x) (i)

We have,

$$G(x) = \sum_{j,r=0}^{\infty} \sum_{0 \le h, \ell \le j} \frac{2^{-j} (-1)^{r+h+\ell} 2^{-\binom{r}{2} - \binom{h}{2} - \binom{\ell}{2} + 2h+2\ell}}{Q_r Q(1) Q_h Q_{j-h} Q_\ell Q_{j-\ell}} \varphi(2^{r+j}, 2^h + 2^\ell; x),$$

where

$$\varphi(u,v;x) = \begin{cases} \frac{e^{-ux} - ((v-u)x+1)e^{-vx}}{(v-u)^2}, & \text{if } u \neq v; \\ x^2 e^{-ux}/2, & \text{if } u = v. \end{cases}$$

Proposition (Drmota & F. & Hwang & Neininger; 2019+) G(x) is a positive function on $(0, \infty)$.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Profile of Symmetric DSTs: G(x) (ii)

Michael Fuchs (NCCU)

э

Michael Fuchs (NCCU)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).

3

< □ > < □ > < □ > < □ > < □ > < □ >

- Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).
- Theory of Poisson Variance

Developed by F., Hwang, Zacharovs (2010,2014).

3

・ 何 ト ・ ヨ ト ・ ヨ ト

- Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).
- Theory of Poisson Variance
 Developed by F., Hwang, Zacharovs (2010,2014).
- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

3

・ 何 ト ・ ヨ ト ・ ヨ ト

- Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).
- Theory of Poisson Variance
 Developed by F., Hwang, Zacharovs (2010,2014).
- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

Laplace Transform

3

・ 何 ト ・ ヨ ト ・ ヨ ト

- Analytic Depoissonization & JS-admissibility Developed by Jacquet & Szpankowski (1998).
- Theory of Poisson Variance
 Developed by F., Hwang, Zacharovs (2010,2014).
- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

- Laplace Transform
- Saddle-point Method

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Profile of Symmetric DSTs: Limit Laws

$$k_f := \log_2 n - \log_2 \log n + 1 + \frac{\log_2 \log n}{\log n};$$

$$k_h := \log_2 n + \sqrt{2\log_2 n} - \frac{1}{2}\log_2 \log_2 n + \frac{1}{\log 2} - \frac{3\log\log n}{4\sqrt{2(\log n)(\log 2)}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Profile of Symmetric DSTs: Limit Laws

$$k_f := \log_2 n - \log_2 \log n + 1 + \frac{\log_2 \log n}{\log n};$$

$$k_h := \log_2 n + \sqrt{2\log_2 n} - \frac{1}{2}\log_2 \log_2 n + \frac{1}{\log 2} - \frac{3\log\log n}{4\sqrt{2(\log n)(\log 2)}}.$$

Theorem (Drmota & F. & Hwang & Neininger; 2019+) (i) $\mathbb{E}(B_{n,k}), \operatorname{Var}(B_{n,k}) \to \infty$ iff there exists $\omega_n \to \infty$ with

$$k_f + \frac{\omega_n}{\log n} \le k \le k_h - \frac{\omega_n}{\sqrt{\log n}}.$$

(ii) If $\mathbb{E}(B_{n,k}) \to \infty$, then

$$\frac{B_{n,k} - \mathbb{E}(B_{n,k})}{\sqrt{\operatorname{Var}(B_{n,k})}} \xrightarrow{d} N(0,1).$$

Michael Fuchs (NCCU)

э

イロト イポト イヨト イヨト

Recall,

$$\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1).$$

イロト 不得下 イヨト イヨト 二日

Recall,

$$\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1).$$

This result is not precise enough to understand the behavior of the saturation level and height!

3

< □ > < □ > < □ > < □ > < □ > < □ >

Recall,

$$\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1).$$

This result is not precise enough to understand the behavior of the saturation level and height!

However, it can be refined to

$$\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + F'(n/2^k) - 2^{-k-1} n F''(n/2^k) + \mathcal{O}(n^{-1} + n/4^k)$$

and for $n/2^k \to \infty$

$$\mathbb{E}(B_{n,k}) \sim \frac{2^k}{Q_k} (1 - 2^{-k})^n.$$

Recall,

$$\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + \mathcal{O}(1).$$

This result is not precise enough to understand the behavior of the saturation level and height!

However, it can be refined to

$$\mathbb{E}(B_{n,k}) = 2^k F(n/2^k) + F'(n/2^k) - 2^{-k-1} n F''(n/2^k) + \mathcal{O}(n^{-1} + n/4^k)$$

and for $n/2^k \to \infty$

$$\mathbb{E}(B_{n,k}) \sim \frac{2^k}{Q_k} (1 - 2^{-k})^n.$$

These results are sufficient!

Michael Fuchs (NCCU)

(人間) とうきょうきょう

Theorem (Drmota & F. & Hwang & Neininger; 2019+)

$$k_H := \left\lfloor \log_2 n + \sqrt{2\log_2 n} - \frac{1}{2}\log_2 \log_2 n + \frac{1}{\log 2} \right\rfloor$$

Then, for the height H_n of symmetric DSTs,

$$\mathbb{P}(H_n = k_H \text{ or } k_H + 1) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.$$

This was conjectured by Aldous & Shields (1988).

l et

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Drmota & F. & Hwang & Neininger; 2019+)

$$k_H := \left\lfloor \log_2 n + \sqrt{2\log_2 n} - \frac{1}{2}\log_2 \log_2 n + \frac{1}{\log 2} \right\rfloor$$

Then, for the height H_n of symmetric DSTs,

$$\mathbb{P}(H_n = k_H \text{ or } k_H + 1) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.$$

This was conjectured by Aldous & Shields (1988).

Theorem (Drmota & F. & Hwang & Neininger; 2019+) Let $k_F := \lceil \log_2 n - \log_2 \log n \rceil$. Then, for the saturation level F_n of symmetric DSTs,

$$\mathbb{P}(F_n = k_F - 1 \text{ or } k_F) \longrightarrow 1, \quad \text{as } n \longrightarrow \infty.$$

l et

ヘロト 人間ト 人団ト 人団ト

Profile of Asymmetric DSTs: Notation

Assume that $p \ge q$.

Set $\alpha_1 = \frac{1}{\log(1/q)}, \qquad \alpha_2 = \frac{1}{\log(1/p)}$ and $\rho = \frac{1}{\log(p/q)} \log\left(\frac{1 - \alpha \log(1/p)}{\alpha \log(1/q) - 1}\right),$ where $\alpha = \lim_{n \to \infty} \frac{k}{\log n}.$

Moreover, set

$$v = -\rho + \alpha \log(p^{-\rho} + q^{-\rho}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Profile of Asymmetric DSTs: Mean & Variance

Theorem (Drmota & Szpankowski; 2011) If $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 - \epsilon) \log n$, then

$$\mathbb{E}(B_{n,k}) \sim H_1\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho} (p^{-\rho} + q^{-\rho})}{\sqrt{2\pi\alpha} \log(p/q)} \cdot \frac{n^{\nu}}{\sqrt{\log n}}$$

where $H_1(\rho; x)$ is a 1-periodic function.

イロト 不得下 イヨト イヨト 二日
Profile of Asymmetric DSTs: Mean & Variance

Theorem (Drmota & Szpankowski; 2011) If $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 - \epsilon) \log n$, then

$$\mathbb{E}(B_{n,k}) \sim H_1\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho} (p^{-\rho} + q^{-\rho})}{\sqrt{2\pi\alpha} \log(p/q)} \cdot \frac{n^{\upsilon}}{\sqrt{\log n}}$$

where $H_1(\rho; x)$ is a 1-periodic function.

Theorem (Kazemi & Vahidi-Asl; 2011) If $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 - \epsilon) \log n$, then $\operatorname{Var}(B_{n,k}) \sim H_2\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho}q^{\rho}(p^{-\rho} + q^{-\rho})}{\sqrt{2\pi\alpha}\log(p/q)} \cdot \frac{n^v}{\sqrt{\log n}},$

where $H_2(\rho; x)$ is a 1-periodic function.

ヘロマ ふぼう くほう くほう

Recurrences

$$B_{n+1,k} \stackrel{d}{=} B_{I_n,k-1} + B^*_{n-I_n,k-1}$$

- $I_n \stackrel{d}{=} \mathsf{Binomial}(n, p);$
- $B_{n,k} \stackrel{d}{=} B_{n,k}^*;$
- $B_{n,k}, B_{n,k}^*, I_n$ independent.

Michael Fuchs (NCCU)

August 21st, 2019 26 / 36

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recurrences

$$B_{n+1,k} \stackrel{d}{=} B_{I_n,k-1} + B_{n-I_n,k-1}^*$$

$$I_n \stackrel{d}{=} \text{Binomial}(n,p);$$

$$B_{n,k} \stackrel{d}{=} B_{n,k}^*;$$

$$B_{n,k}, B_{n,k}^*, I_n$$
independent.
$$I_n$$
Root
$$I_n \stackrel{0}{=} \text{Root}$$
Size:
$$I_n = I_n$$

This gives the following recurrence for the mean $(\mu_{n,k} := \mathbb{E}(B_{n,k}))$

$$\mu_{n+1,k} = \sum_{j=0}^{n} \binom{n}{j} p^{j} q^{n-j} \left(\mu_{j,k-1} + \mu_{n-j,k-1} \right).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- 2

$$\mu_{n+1,k} = \sum_{j=0}^{n} \binom{n}{j} p^{j} q^{n-j} \left(\mu_{j,k-1} + \mu_{n-j,k-1} \right).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mu_{n+1,k} = \sum_{j=0}^{n} \binom{n}{j} p^{j} q^{n-j} \left(\mu_{j,k-1} + \mu_{n-j,k-1} \right).$$

• Consider the **Poisson-generating function**:

$$\tilde{f}_k(z) := e^{-z} \sum_n \mu_{n,k} \frac{z^n}{n!}.$$

Then,

$$\tilde{f}'_k(z) + \tilde{f}_k(z) = \tilde{f}_{k-1}(pz) + \tilde{f}_{k-1}(qz).$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$$\mu_{n+1,k} = \sum_{j=0}^{n} \binom{n}{j} p^{j} q^{n-j} \left(\mu_{j,k-1} + \mu_{n-j,k-1} \right).$$

• Consider the Poisson-generating function:

$$\tilde{f}_k(z) := e^{-z} \sum_n \mu_{n,k} \frac{z^n}{n!}.$$

Then,

$$\tilde{f}'_k(z) + \tilde{f}_k(z) = \tilde{f}_{k-1}(pz) + \tilde{f}_{k-1}(qz).$$

• Consider the (normalized) Mellin-transform:

$$F_k(s) := \frac{1}{\Gamma(s)} \int_0^\infty \tilde{f}_k(z) z^{s-1} \mathrm{d}s,$$

where $\Gamma(s)$ is the Gamma-function.

Michael Fuchs (NCCU)

イロト イポト イヨト イヨト

Then,

$$F_k(s) - F_k(s-1) = T(s)F_{k-1}(s),$$

where

$$T(s) := p^{-s} + q^{-s}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then,

$$F_k(s) - F_k(s-1) = T(s)F_{k-1}(s),$$

where

$$T(s) := p^{-s} + q^{-s}.$$

• Consider the ordinary generating function:

$$f(s,\omega) := \sum_{k} F_k(s)\omega_k.$$

Then,

$$f(s,\omega) = \frac{f(s-1,\omega)}{1-\omega T(s)}$$

3

(日) (四) (日) (日) (日)

Then,

$$F_k(s) - F_k(s-1) = T(s)F_{k-1}(s),$$

where

$$T(s) := p^{-s} + q^{-s}.$$

• Consider the ordinary generating function:

$$f(s,\omega) := \sum_{k} F_k(s)\omega_k.$$

Then,

$$f(s,\omega) = \frac{f(s-1,\omega)}{1-\omega T(s)}$$

and by iteration

$$f(s,\omega) = \frac{g(s,\omega)}{g(0,\omega)}, \qquad g(s,\omega) := \prod_{j\geq 0} \frac{1}{1-\omega T(s-j)}.$$

3

< □ > < □ > < □ > < □ > < □ > < □ >

What is left to invert the whole process.

3

イロト イポト イヨト イヨト

What is left to invert the whole process.

• From $f(s,\omega)$ to $F_k(s)$:

$$F_k(s) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{f(s,\omega)}{\omega^{k+1}} \mathrm{d}\omega,$$

where C_1 is a suitable contour.

イロト イポト イヨト イヨト 二日

What is left to invert the whole process.

• From $f(s,\omega)$ to $F_k(s)$:

$$F_k(s) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{f(s,\omega)}{\omega^{k+1}} \mathrm{d}\omega,$$

where \mathcal{C}_1 is a suitable contour.

• From $F_k(s)$ to $\tilde{f}_k(z)$:

$$\tilde{f}_k(z) = \frac{1}{2\pi i} \int_{\mathcal{C}_2} \Gamma(s) F_k(s) z^{-s} \mathrm{d}s,$$

where C_2 is a suitable vertical line.

3

12 N 4 2 N

What is left to invert the whole process.

• From
$$f(s,\omega)$$
 to $F_k(s)$:

$$F_k(s) = \frac{1}{2\pi i} \int_{\mathcal{C}_1} \frac{f(s,\omega)}{\omega^{k+1}} \mathrm{d}\omega,$$

where C_1 is a suitable contour.

• From $F_k(s)$ to $\tilde{f}_k(z)$:

$$\tilde{f}_k(z) = \frac{1}{2\pi i} \int_{\mathcal{C}_2} \Gamma(s) F_k(s) z^{-s} \mathrm{d}s,$$

where C_2 is a suitable vertical line.

• From $\tilde{f}_k(z)$ to $\mu_{n,k}$:

$$\mu_{n,k} = \frac{n!}{2\pi i} \int_{\mathcal{C}_3} \frac{e^z \tilde{f}_k(z)}{z^{n+1}} \mathrm{d}z$$

where C_3 is a suitable contour.

Michael Fuchs (NCCU)

Drmota & Szpankowski (2011):

 $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 + \epsilon) \log n.$

イロト 不得 トイヨト イヨト 二日

Drmota & Szpankowski (2011):

- $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 + \epsilon) \log n.$
 - From $f(s,\omega)$ to $F_k(s)$ via residue theorem.
 - From $F_k(s)$ to $\tilde{f}_k(z)$ and $\tilde{f}_k(z)$ to $\mu_{n,k}$ via saddle-point method.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Drmota & Szpankowski (2011):

 $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 + \epsilon) \log n.$

- From $f(s,\omega)$ to $F_k(s)$ via residue theorem.
- \bullet From $F_k(s)$ to $\tilde{f}_k(z)$ and $\tilde{f}_k(z)$ to $\mu_{n,k}$ via saddle-point method.

 \rightarrow "double saddle-point approach" (Hwang et al.; 2006)

Drmota & Szpankowski (2011):

 $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 + \epsilon) \log n.$

- From $f(s,\omega)$ to $F_k(s)$ via residue theorem.
- From $F_k(s)$ to $\tilde{f}_k(z)$ and $\tilde{f}_k(z)$ to $\mu_{n,k}$ via saddle-point method. \longrightarrow "double saddle-point approach" (Hwang et al.; 2006)

Drmota & F. (2019+):

 $k \approx \alpha_1 \log n.$

Drmota & Szpankowski (2011):

 $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 + \epsilon) \log n.$

- From $f(s,\omega)$ to $F_k(s)$ via residue theorem.
- From $F_k(s)$ to $\tilde{f}_k(z)$ and $\tilde{f}_k(z)$ to $\mu_{n,k}$ via saddle-point method. \longrightarrow "double saddle-point approach" (Hwang et al.; 2006)

Drmota & F. (2019+):

 $k \approx \alpha_1 \log n.$

Saddle point method for the inversion from $\tilde{F}_k(s)$ to $\tilde{f}_k(z)$ has to be replaced by the Poisson summation formula!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Profile of Asymmetric DSTs: Mean

Theorem (Drmota & F.; 2019+) Let $k = \alpha_1(\log n - \log \log \log n + D)$, where $D = \mathcal{O}(1)$. Then, $\mathbb{E}(B_{n,k}) = \frac{1 + o(1)}{\prod_{i>1} (1 - a^j)} (\log n)^{\frac{D - \log\log(p/q) - 1}{\log(p/q)}}$ $\times \left(\frac{(\log(1/q))^{-m_0}}{m_0!} (\log n)^{-\frac{H(m_0 \log(p/q) - D + \log\log(p/q))}{\log(p/q)}}\right)$ $+\frac{(\log(1/q))^{-m_0-1}}{(m_0+1)!}(\log n)^{-\frac{H((m_0+1)\log(p/q)-D+\log\log(p/q))}{\log(p/q)}}\right)$ $+ \mathcal{O}\left((\log n)^{\frac{D - \log \log(p/q) - 1}{\log(p/q)} - 1} \right),$ where $m_0 := \max(\lfloor (\frac{D - \log \log(p/q)}{\log(p/q)} \rfloor, 0)$ and $H(x) := e^x - 1 - x$. 500

Michael Fuchs (NCCU)

August 21st, 2019 31 / 36

Theorem (Drmota & F.; 2019+)

For the saturation level of asymmetric DSTs, we have

$$\mathbb{P}(F_n=k_F-1 \quad \text{or} \quad F_n=k_F \quad F_n=k_F+1) \longrightarrow 1, \qquad \text{as} \ \longrightarrow \infty,$$

where k_F is a sequence of n which satisfies

$$k_F = \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1).$$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Drmota & F.; 2019+)

For the saturation level of asymmetric DSTs, we have

$$\mathbb{P}(F_n=k_F-1 \quad \text{or} \quad F_n=k_F \quad F_n=k_F+1) \longrightarrow 1, \qquad \text{as} \ \longrightarrow \infty,$$

where k_F is a sequence of n which satisfies

$$k_F = \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1).$$

Remarks:

• Two point concentration holds for almost the whole range of p.

(4) (日本)

Theorem (Drmota & F.; 2019+)

For the saturation level of asymmetric DSTs, we have

$$\mathbb{P}(F_n=k_F-1 \quad \text{or} \quad F_n=k_F \quad F_n=k_F+1) \longrightarrow 1, \qquad \text{as} \ \longrightarrow \infty,$$

where k_F is a sequence of n which satisfies

$$k_F = \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1).$$

Remarks:

- Two point concentration holds for almost the whole range of p.
- We conjecture that two point concentration holds for 1/2 .

- 20

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Drmota & F.; 2019+)

For the saturation level of asymmetric DSTs, we have

$$\mathbb{P}(F_n=k_F-1 \quad \text{or} \quad F_n=k_F \quad F_n=k_F+1) \longrightarrow 1, \qquad \text{as} \ \longrightarrow \infty,$$

where k_F is a sequence of n which satisfies

$$k_F = \log_{1/q} n - \log_{1/q} \log \log n + \mathcal{O}(1).$$

Remarks:

- Two point concentration holds for almost the whole range of p.
- We conjecture that two point concentration holds for 1/2 .
- We are currently working on a similar concentration result for the height.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Concentration of Saturation Level and Height

Saturation Level:

Trees	p = q?	Concentration	Reference
Tries	0	2 points	HNPS2006
DSTs	$p = \frac{1}{2}$	2 points	DFHN2019+
DSTS	$p \neq \frac{1}{2}$	at most 3 points	DF2019+
PATRICIA Tries	0	2 points	HNPS2006

Height:

Trees	p = q?	Concentration	Reference
Tries	0	no	F1983; P1986; JR1986
DSTs	$p = \frac{1}{2}$	2 points	DFHN2019+
DSTS	$p \neq \frac{1}{2}$?	DF2019+
PATRICIA Tries	$p = \frac{1}{2}$	3 points	Conjectured by KS2002
FAIRICIA THES	$p \neq \frac{1}{2}$?	?

イロト 不得 トイヨト イヨト 二日

Profile of Asymmetric PATRICIA Tries

Theorem (Magner & Szpankowski; 2018) If $(\alpha_1 + \epsilon) \log n \le k \le (\alpha_2 - \epsilon) \log n$, then

$$\mu_{n,k} \sim P_1\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho} (p^{-\rho} + q^{-\rho})}{\sqrt{2\pi\alpha} \log(p/q)} \cdot \frac{n^v}{\sqrt{\log n}}$$

and

$$\sigma_{n,k}^2 \sim P_2\left(\rho; \log_{p/q} p^k n\right) \frac{p^{\rho} q^{\rho} (p^{-\rho} + q^{-\rho})}{\sqrt{2\pi\alpha} \log(p/q)} \cdot \frac{n^{\nu}}{\sqrt{\log n}}$$

where $P_1(\rho; x)$ and $P_2(\rho; x)$ are 1-periodic functions.

Moreover,

$$\frac{B_{n,k} - \mu_{n,k}}{\sigma_{n,k}} \xrightarrow{d} N(0,1).$$

イロト イヨト イヨト 一日

Height of PATRICIA tries

By extending the previous study to the boundary.

イロト 不得 トイヨト イヨト 二日

Height of PATRICIA tries

By extending the previous study to the boundary.

Theorem (Drmota & Magner & Szpankowski; 2019) With high probability,

$$H_n = \begin{cases} \log_2 n + \sqrt{2\log_2 n} + o(\sqrt{\log n}), & \text{if } p = q;\\ \log_{1/p} n + \frac{1}{2}\log_{p/q}\log n + o(\log\log n), & \text{if } p > q. \end{cases}$$

See the paper:

M. Drmota, A. Magner, W.Szpankowski (2019). Asymmetric Rényi problem, *Combinatorics, Probability and Computing*, **28:4**, 542–573

or the (more detailed) arxiv version of this paper.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Profile of Random Digital Trees:

Trees	p = q?	Mean	Variance	CLT
Tries	0	\checkmark	\checkmark	\checkmark
DSTs	$p = \frac{1}{2}$	\checkmark	\checkmark	\checkmark
	$p \neq \frac{1}{2}$	\checkmark	\checkmark	?
PATRICIA Tries	$p = \frac{1}{2}$?	?	?
	$p \neq \frac{1}{2}$	\checkmark	\checkmark	\checkmark

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Profile of Random Digital Trees:

Trees	p = q?	Mean	Variance	CLT
Tries	0	\checkmark	\checkmark	\checkmark
DSTs	$p = \frac{1}{2}$	\checkmark	\checkmark	\checkmark
	$p \neq \frac{1}{2}$	\checkmark	\checkmark	?
PATRICIA Tries	$p = \frac{1}{2}$?	?	?
	$p \neq \frac{1}{2}$	\checkmark	\checkmark	\checkmark

Major Open Tasks:

Michael Fuchs (NCCU)

Height and Saturation Level

August 21st, 2019 36 / 36

イロト 不得下 イヨト イヨト 二日

Profile of Random Digital Trees:

Trees	p = q?	Mean	Variance	CLT
Tries	0	\checkmark	\checkmark	\checkmark
DSTs	$p = \frac{1}{2}$	\checkmark	\checkmark	\checkmark
	$p \neq \frac{1}{2}$	\checkmark	\checkmark	?
PATRICIA Tries	$p = \frac{1}{2}$?	?	?
	$p \neq \frac{1}{2}$	\checkmark	\checkmark	\checkmark

Major Open Tasks:

• profile of symmetric PATRICIA tries;

イロト 不得 トイヨト イヨト 二日

Profile of Random Digital Trees:

Trees	p = q?	Mean	Variance	CLT
Tries	0	\checkmark	\checkmark	\checkmark
DSTs	$p = \frac{1}{2}$	\checkmark	\checkmark	\checkmark
	$p \neq \frac{1}{2}$	\checkmark	\checkmark	?
PATRICIA Tries	$p = \frac{1}{2}$?	?	?
	$p \neq \frac{1}{2}$	\checkmark	\checkmark	\checkmark

Major Open Tasks:

- profile of symmetric PATRICIA tries;
- refined results for the profile at the boundary of the "central range" for asymmetric PATRICIA tries (very complicated!).

Michael Fuchs (NCCU)

Height and Saturation Level

3

< 日 > < 同 > < 三 > < 三 >