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Robinson-Foulds Distance of Phylogenetic Trees

T ... a phylogenetic tree.
Every e€ E(T) gives a split A|B.

Definition (RF distance)

The Robinson-Foulds distance (RF distance) drp(Ty, T2) of Ty and T, is the
number of splits which only occurs either in Ty or in T> but not in both.
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Every e€ E(T) gives a split A|B.

Definition (RF distance)

The Robinson-Foulds distance (RF distance) drp(Ty, T2) of Ty and T, is the
number of splits which only occurs either in Ty or in T> but not in both.

Question: What is the limit distribution of drp(J7,93) for random
uniform trees of size n?
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Robinson-Foulds Distance of Phylogenetic Trees

T ... a phylogenetic tree.
Every e€ E(T) gives a split A|B.

Definition (RF distance)

The Robinson-Foulds distance (RF distance) drp(Ty, T2) of Ty and T, is the
number of splits which only occurs either in Ty or in T> but not in both.

Question: What is the limit distribution of drp(J7,93) for random
uniform trees of size n?

Theorem (Penny & Steel; 1993)

As n— oo,
_ drr(91,T2)

2 4, Poisson(1/8).

n—-3
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|
Cayley Trees

Definition
A (unrooted or rooted) Cayley tree is a tree with n vertices which are
labeled by {1,...,n}.
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Cayley Trees

Definition
A (unrooted or rooted) Cayley tree is a tree with n vertices which are
labeled by {1,...,n}.

Theorem (Cayley; 1889)

# of unrooted Cayley trees= n""?;

# of rooted Cayley trees=n""!.
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|
Cayley Trees

Definition
A (unrooted or rooted) Cayley tree is a tree with n vertices which are
labeled by {1,...,n}.

Theorem (Cayley; 1889)

# of unrooted Cayley trees= n""?;

# of rooted Cayley trees=n""!.

The RF-distance was recently defined for (unrooted and rooted) Cayley’s
trees in:

E. Khayatian, G. Valiente, L. Zhang (2024). The k-Robinson-Foulds
measure for labeled trees, Journal of Comput. Biol., 31:4, 328-344.
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@ Let T be a Cayley tree and 0sk=<n-2.

@ For e={u,v}, T —e has components C, and C,.
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|
k-RF Distance of Cayley Trees (i)

@ Let T be a Cayley tree and 0sk=<n-2.
@ For e={u,v}, T —e has components C, and C,.

@ Define;

No(u, k):={weCy, : dw,u) <k};
N.(v, k) ={weC, : d(w,v) <k}.
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k-RF Distance of Cayley Trees (i)

@ Let T be a Cayley tree and 0sk=<n-2.

@ For e={u,v}, T —e has components C, and C,.

o Define:
No(u, k):={weCy, : dw,u) <k};
N.(v, k) ={weC, : d(w,v) <k}.
@ {N,(u, k), No(v,k)} is called k-local split.
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k-RF Distance of Cayley Trees (i)

@ Let T be a Cayley tree and 0sk=<n-2.

@ For e={u,v}, T —e has components C, and C,.

o Define:
No(u, k):={weCy, : dw,u) <k};
N.(v, k) ={weC, : d(w,v) <k}.
@ {N,(u, k), No(v,k)} is called k-local split.

Let Li(T) be the set of all k-local splits.

Michael Fuchs (NCCU) k-RF distance August 29th, 2025 4/16



|
k-RF Distance of Cayley Trees (i)

@ Let T be a Cayley tree and 0sk=<n-2.

@ For e={u,v}, T —e has components C, and C,.

o Define:
No(u, k):={weCy, : dw,u) <k};
N.(v, k) ={weC, : d(w,v) <k}.
@ {N,(u, k), No(v,k)} is called k-local split.

Let Li(T) be the set of all k-local splits.

For Cayley trees T} and Tu:
d-grr(Ty, T2) := | Lg (T AL (T2)].
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k-RF Distance of Cayley Trees (ii)

Si(T1, T») ... number of k-local splits shared by T; and T,.
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k-RF Distance of Cayley Trees (ii)

Si(T1, T») ... number of k-local splits shared by T; and T,.

Then,
di_pr(T1, T2) =2(n—1) =25 (T1, T»).

Michael Fuchs (NCCU) k-RF distance August 29th, 2025 5/16



|
k-RF Distance of Cayley Trees (ii)

Si(T1, T») ... number of k-local splits shared by T; and T,.

Then,
di_pr(T1, T2) =2(n—1) =25 (T1, T»).

Example:

4 6 l— 6—4
N A * .
2
* SN

Tl T2

3——2—5

Figure: Shared k-local splits for k=0 (+) and k=4 (*).
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Histogram for n =6 (from Khayatian & Valiente & Zhang)
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Main Result

Khayatian et al. conjectured that the limit distribution at the two boundary
cases, i.e., k=0 and k=n-2, should be Poisson.
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Theorem (F. & Steel; 2025)

(i) Fork=0,
i do-rr(91,92)

5 4, Poisson(2).
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N
Main Result

Khayatian et al. conjectured that the limit distribution at the two boundary
cases, i.e., k=0 and k=n-2, should be Poisson.

Theorem (F. & Steel; 2025)

(i) Fork=0,
do—rr(91, 9> .
—l—w i»P01sson(2).
(i) Fork=n-2,

din-2-rr(J1,92) —2n(1—e72) 4

— N(0,1).
2v/(e2-3eHn

For the proof, we can equivalently work with Si(97,93).
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k=n-2 (i)
S, ... number of splits shared by two random trees T; and T, of size n.
S, ... number of shared trivial splits (i.e., common leaves).
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k=n-2 (i)

Sn ...

number of splits shared by two random trees T; and T, of size n.
S ...

number of shared trivial splits (i.e., common leaves).

Lemma
As n— oo,
Sn _Sln p
Vvn
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k=n-2 (i)
S, ... number of splits shared by two random trees T; and T, of size n.
S, ... number of shared trivial splits (i.e., common leaves).
Lemma
As n— oo, /
Sn=Sy v,
Vvn

Thus the result follows from:
Proposition
As n— oo, )

S —ne”

n L. N, 1.

Vie?2-3eYn
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k=n-2 (ii)
Note:

E(S),(S,— 1)+ (S}, —k+1))
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k=n-2 (ii)
Note:

E@;w;—n-uw;—k+1n:k{2)
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N @
k=n-2 (ii)
Note:

k=2, _ 12k\2
tE(Si,(S’,,—l)---(S:,—k+1))=k!(2)((" 2 i)

nn—z
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k=n-2 (i)

Note:

nn—2

sy

ke

k=2, _ 12k\2
[E(S;(S%_l)__.(s,n_kﬂ))=k!(n)((n K" 2(n k))

S
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k=n-2 (i)

Note:

nn—2

k 2n-4
= k! -z
{64
Corollary

(i) E(S,) ~ne 2 and Var(S)) ~ (e -3e )n.

ke

k=2, _ 12k\2
[E(S;(S;I_l)__.(s,n_kﬂ))=k!(n)((n K" 2(n k))

S
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|
k=n-2 (i)

Note:

ke

nn—2

k 2n-4
=kl -z
{64
Corollary

(i) E(S,) ~ne 2 and Var(S)) ~ (e -3e )n.
(i) Form=1,

k=2, _ 12k\2
rE(s',,(s;,l—l)-..(s'n—mn)=k!(")((” K" 2(n k))

S

. S —ne2 \" ml/(2™2(m/2)), if m is even;
Vie2-3e™n 0, if m is odd.

V.
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k=n-2 (iii)
One can also directly work with factorial moments.
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-
k=n-2 (iii)

One can also directly work with factorial moments.

Theorem (Gao & Wormald; 2004)

_ 2
On =\ Hn+t HnSn,

where 0 < p, — oo and p, = 0(c3). Let X, be a sequence of RVs with

Let s, >—u;,! and

E(Xn(Xp = 1) (X — k +1)) ~ ke sn/2

uniformly for cuplon, <k <c'uylo,, where ¢’ >c>0.

Then, as n — oo,

Xn—Un d
n n
—— — N(,1).
Michael Fuchs (NCCU) k-RF distance August 29th, 2025 10/ 16



NS
k=n-2 (iv)
Other methods of proof.

= = = E DA
Michael Fuchs (NCCU) k-RF distance



|
k=n-2 (iv)

Other methods of proof.

(i) Use the (known) limit distribution result for the number of leaves a
random Cayley tree.

Michael Fuchs (NCCU) k-RF distance August 29th, 2025 11/16



|
k=n-2 (iv)

Other methods of proof.

(i) Use the (known) limit distribution result for the number of leaves a
random Cayley tree.

(i) S}, ... number of empty boxes when throwing 2n—4 balls uniformly at
random into n urns.
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k=n-2 (iv)

Other methods of proof.

(i) Use the (known) limit distribution result for the number of leaves a
random Cayley tree.

(i) S}, ... number of empty boxes when throwing 2n—4 balls uniformly at
random into n urns.

— Use results for urn models.
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k=n-2 (iv)

Other methods of proof.

(i) Use the (known) limit distribution result for the number of leaves a
random Cayley tree.

(i) S}, ... number of empty boxes when throwing 2n—4 balls uniformly at
random into n urns.

— Use results for urn models.

(iii) Let P,(z) be the probability-generating function of S/,.
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k=n-2 (iv)

Other methods of proof.

(i) Use the (known) limit distribution result for the number of leaves a
random Cayley tree.

(i) S}, ... number of empty boxes when throwing 2n—4 balls uniformly at
random into n urns.

— Use results for urn models.
(iii) Let P,(z) be the probability-generating function of S,. Then,

2n—4)!
Pu(y) = (’1’1274)[22”_4](62 ry-Dn
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|
k=n-2 (iv)

Other methods of proof.

(i) Use the (known) limit distribution result for the number of leaves a
random Cayley tree.

(i) S}, ... number of empty boxes when throwing 2n—4 balls uniformly at
random into n urns.

— Use results for urn models.
(iii) Let P,(z) be the probability-generating function of S,. Then,

2n—4)!
Pu(y) = (:274)[22”_4](& +y-1D"

Now, use saddle point method.
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k=0 (i)
Sy ...

number of common edges of two random trees Ty and T, of size n.
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|
k=0 (i)

Sn ... number of common edges of two random trees T; and T» of size n.

Note:

n
-
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k=0 (i)

Sn ... number of common edges of two random trees T; and T» of size n.

Note:

2
n
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k=0 (i
Sn ... number of common edges of two random trees T; and T» of size n.
Note:
_ 2
n) (Zio )k 2 -2
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k=0 (i)
Sn ... number of common edges of two random trees T; and T» of size n.
Note:
n-1(n-2y.k-2 n-k-2\2
. k*“(n—k) 2
E(Sp) = (")(Zk—l ) _ ) _ (”) (E)
2 nn-2 2/\n
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k=0 (i)
Sn ... number of common edges of two random trees T; and T» of size n.
Note:
(n)(ZZ:i (ij)k’f‘z(n—k)"‘k‘z)2 (n) 2\ 2(n-1)
E(Sp) = = _ - (_) _ '
2 nn-2 2/\n n
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k=0 (i)
Sn ... number of common edges of two random trees T; and T» of size n.
Note:
(n)(zz:i (zzf)kk—z(n-k)n—k—Z)z (n) 2\2 2(n-1)
E(Sp) = = _ - (_) _2n-1)
2 nn-2 2/\n n

Similarly, one can compute the second factorial moments by considering
the number of trees which contain two different fixed edges.
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k=0 (i)
Sn ... number of common edges of two random trees T; and T» of size n.
Note:
(n)(zz:i (zj)kk—2<n-k)n—k—2)2 (n) 2\2 2(n-1)
E(Sp) = = _ - (_) _2n-1)
2 nn-2 2/\n n

Similarly, one can compute the second factorial moments by considering
the number of trees which contain two different fixed edges.

Proposition

The number of Cayley trees which contain a spanning forest F consisting of

m trees equals:

m-2
qlqmn ,

where q; denotes the number of vertices in the i-th tree in F.

y
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k=0 (i)
Sn ... number of common edges of two random trees T; and T» of size n.
Note:
(n)(zz:i (zj)kk—2<n-k)n—k—2)2 (n) 2\2 2(n-1)
E(Sp) = = _ - (_) _ ,
2 nn-2 2/\n n

Similarly, one can compute the second factorial moments by considering
the number of trees which contain two different fixed edges.

Proposition (Moon; 1970)

The number of Cayley trees which contain a spanning forest F consisting of

m trees equals:

m-2
qlqmn ,

where q; denotes the number of vertices in the i-th tree in F.

y
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k=0 (i)

Set:

Sn = ZXu,vr

u,v
where X, , =1 if {u, v} is a common edge and 0 otherwise
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k=0 (i)

Set:
Sn = Z Xu,vr

u,v

where X, , =1 if {u, v} is a common edge and 0 otherwise.

Ny,y ... contains {u, v} and all other edges incident to {u, v} in K.
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k=0 (i
Set:
Sn = ZXu,vr

where X, , =1 if {u, v} is a common edge and 0 otherwise.
Ny,y ... contains {u, v} and all other edges incident to {u, v} in K.

Observation: X, , is independent of (X, : {r,s} ¢ Ny ,).
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k=0 (i)

Set:
Sn = ZXu,v»
u,v
where X, , =1 if {u, v} is a common edge and 0 otherwise.
Ny,y ... contains {u, v} and all other edges incident to {u, v} in K.
Observation: X, , is independent of (X, : {r,s} ¢ Ny ,).

Thus, one can use the “dissociated case" of the Stein-Chen bound to prove
the following result:

Proposition
We have,
dry(S,,Poisson(2(n—1)/n)) = O(1/n).
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For the rooted case, the situation is slightly different.
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k=0 (iii)
For the rooted case, the situation is slightly different.

Proposition (F. & Yeh)

The number of rooted Cayley trees which contain a spanning forest F
consisting of m rooted trees equals:

n™3,
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k=0 (iii)

For the rooted case, the situation is slightly different.

Proposition (F. & Yeh)

The number of rooted Cayley trees which contain a spanning forest F
consisting of m rooted trees equals:

n™3,

Theorem (F. & Yeh)

For k=0,
do-pr(J1,92) a _ .
n—1-2REZLT2] 4 poisson(l).
2 y
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k=0 (iii)

For the rooted case, the situation is slightly different.

Proposition (F. & Yeh)

The number of rooted Cayley trees which contain a spanning forest F
consisting of m rooted trees equals:

n™3,

Theorem (F. & Yeh)
For k=0, _
_ do-rr(J1,T2)

> N Poisson(1).

n—1

On the other hand, the result for k= n—2 remains unchanged.
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Summary
@ Our results explain the previous simulation result.
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Summary

@ Our results explain the previous simulation result.

@ For unrooted and rooted Cayley trees, the results are the same for
k=n-2 but slightly different for k= 0.
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Summary

@ Our results explain the previous simulation result.

@ For unrooted and rooted Cayley trees, the results are the same for
k=n-2 but slightly different for k= 0.

@ For k=n-3, the limit law is again normal; for k=1, the limit law is
(degenerate) Poisson.
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Summary

@ Our results explain the previous simulation result.

@ For unrooted and rooted Cayley trees, the results are the same for
k=n-2 but slightly different for k=0.

@ For k=n-3, the limit law is again normal; for k=1, the limit law is
(degenerate) Poisson.

Question: What happens for 2 < k< n—47 Where does the limit law
change from Poisson to normal?
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Summary

@ Our results explain the previous simulation result.

@ For unrooted and rooted Cayley trees, the results are the same for
k=n-2 but slightly different for k=0.

@ For k=n-3, the limit law is again normal; for k=1, the limit law is
(degenerate) Poisson.

Question: What happens for 2 < k< n—47 Where does the limit law
change from Poisson to normal?

@ In the recent paper

E. Khayatian and L. Zhang. Simple k-RF Metrics for Comparison of
Labeled DAGs, bioRxiv

a central limit theorem is conjectured for dy_s_rp(J71,93) for
l<sk<n-1.
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Summary

@ Our results explain the previous simulation result.

@ For unrooted and rooted Cayley trees, the results are the same for
k=n-2 but slightly different for k=0.

@ For k=n-3, the limit law is again normal; for k=1, the limit law is
(degenerate) Poisson.

Question: What happens for 2 < k< n—47 Where does the limit law
change from Poisson to normal?

@ In the recent paper

E. Khayatian and L. Zhang. Simple k-RF Metrics for Comparison of
Labeled DAGs, bioRxiv

a central limit theorem is conjectured for dy_s_rp(J71,93) for
1<k<n-1. This conjecture can also be proved with our tools (joint
with Bernhard Gittenberger, TU Wien).
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Thanks for the attention!

Michael Fuchs (NCCU) k-RF distance August 29th, 2025 16 / 16



