Distributional Results for the k-Robinson-Foulds Distance of Random Cayley Trees (joint with Cheng-Kai Yeh and Mike Steel)

Michael Fuchs

Department of Mathematical Sciences Chengchi University Taipei, Taiwan

August 29th, 2025

T ... a phylogenetic tree.

T ... a phylogenetic tree.

Every $e \in E(T)$ gives a split A|B.

T ... a phylogenetic tree.

Every $e \in E(T)$ gives a split A|B.

Definition (RF distance)

The Robinson-Foulds distance (RF distance) $d_{RF}(T_1,T_2)$ of T_1 and T_2 is the number of splits which only occurs either in T_1 or in T_2 but not in both.

T ... a phylogenetic tree.

Every $e \in E(T)$ gives a split A|B.

Definition (RF distance)

The Robinson-Foulds distance (RF distance) $d_{RF}(T_1,T_2)$ of T_1 and T_2 is the number of splits which only occurs either in T_1 or in T_2 but not in both.

Question: What is the limit distribution of $d_{RF}(\mathcal{T}_1, \mathcal{T}_2)$ for random uniform trees of size n?

T ... a phylogenetic tree.

Every $e \in E(T)$ gives a split A|B.

Definition (RF distance)

The Robinson-Foulds distance (RF distance) $d_{RF}(T_1,T_2)$ of T_1 and T_2 is the number of splits which only occurs either in T_1 or in T_2 but not in both.

Question: What is the limit distribution of $d_{RF}(\mathcal{T}_1, \mathcal{T}_2)$ for random uniform trees of size n?

Theorem (Penny & Steel; 1993)

As
$$n \to \infty$$
,

$$n-3-\frac{d_{RF}(\mathcal{T}_1,\mathcal{T}_2)}{2} \xrightarrow{d} \text{Poisson}(1/8).$$

Definition

A (unrooted or rooted) Cayley tree is a tree with n vertices which are labeled by $\{1, ..., n\}$.

Definition

A (unrooted or rooted) Cayley tree is a tree with n vertices which are labeled by $\{1, \ldots, n\}$.

Theorem (Cayley; 1889)

```
# of unrooted Cayley trees = n^{n-2};
```

of rooted Cayley trees =
$$n^{n-1}$$
.

Definition

A (unrooted or rooted) Cayley tree is a tree with n vertices which are labeled by $\{1, ..., n\}$.

Theorem (Cayley; 1889)

```
# of unrooted Cayley trees = n^{n-2};
# of rooted Cayley trees = n^{n-1}.
```

The RF-distance was recently defined for (unrooted and rooted) Cayley's trees in:

E. Khayatian, G. Valiente, L. Zhang (2024). The k-Robinson-Foulds measure for labeled trees, Journal of Comput. Biol., 31:4, 328–344.

4日 → 4日 → 4 目 → 4目 → 99(で)

• Let T be a Cayley tree and $0 \le k \le n-2$.

- Let T be a Cayley tree and $0 \le k \le n-2$.
- For $e = \{u, v\}$, T e has components C_u and C_v .

- Let T be a Cayley tree and $0 \le k \le n-2$.
- For $e = \{u, v\}$, T e has components C_u and C_v .
- Define:

$$N_e(u,k) := \{ w \in C_u : d(w,u) \le k \};$$

$$N_e(v,k) := \{ w \in C_v : d(w,v) \le k \}.$$

- Let T be a Cayley tree and $0 \le k \le n-2$.
- For $e = \{u, v\}$, T e has components C_u and C_v .
- Define:

$$N_e(u, k) := \{ w \in C_u : d(w, u) \le k \};$$

 $N_e(v, k) := \{ w \in C_v : d(w, v) \le k \}.$

• $\{N_e(u,k), N_e(v,k)\}$ is called *k-local split*.

- Let T be a Cayley tree and $0 \le k \le n-2$.
- For $e = \{u, v\}$, T e has components C_u and C_v .
- Define:

$$N_e(u, k) := \{ w \in C_u : d(w, u) \le k \};$$

 $N_e(v, k) := \{ w \in C_v : d(w, v) \le k \}.$

- $\{N_e(u,k), N_e(v,k)\}\$ is called k-local split.
- Let $L_k(T)$ be the set of all k-local splits.

- Let T be a Cayley tree and $0 \le k \le n-2$.
- For $e = \{u, v\}$, T e has components C_u and C_v .
- Define:

$$N_e(u, k) := \{ w \in C_u : d(w, u) \le k \};$$

 $N_e(v, k) := \{ w \in C_v : d(w, v) \le k \}.$

- $\{N_e(u,k), N_e(v,k)\}\$ is called *k-local split*.
- Let $L_k(T)$ be the set of all k-local splits.
- For Cayley trees T_1 and T_2 :

$$d_{k-RF}(T_1, T_2) := |L_k(T_1)\Delta L_k(T_2)|.$$

 $S_k(T_1, T_2)$... number of k-local splits shared by T_1 and T_2 .

 $S_k(T_1, T_2)$... number of k-local splits shared by T_1 and T_2 .

Then,

$$d_{k-RF}(T_1, T_2) = 2(n-1) - 2S_k(T_1, T_2).$$

 $S_k(T_1, T_2)$... number of k-local splits shared by T_1 and T_2 .

Then,

$$d_{k-RF}(T_1,T_2) = 2(n-1) - 2S_k(T_1,T_2).$$

Example:

Figure: Shared k-local splits for k = 0 (+) and k = 4 (*).

Histogram for n = 6 (from Khayatian & Valiente & Zhang)

Khayatian et al. conjectured that the limit distribution at the two boundary cases, i.e., k=0 and k=n-2, should be Poisson.

Khayatian et al. conjectured that the limit distribution at the two boundary cases, i.e., k=0 and k=n-2, should be Poisson.

Theorem (F. & Steel; 2025)

Khayatian et al. conjectured that the limit distribution at the two boundary cases, i.e., k=0 and k=n-2, should be Poisson.

Theorem (F. & Steel; 2025)

(i) For
$$k = 0$$
,

$$n-1-\frac{d_{0-RF}(\mathcal{T}_1,\mathcal{T}_2)}{2} \xrightarrow{d}$$
Poisson(2).

Khayatian et al. conjectured that the limit distribution at the two boundary cases, i.e., k=0 and k=n-2, should be Poisson.

Theorem (F. & Steel; 2025)

(i) For k = 0,

$$n-1-\frac{d_{0-RF}(\mathcal{T}_1,\mathcal{T}_2)}{2} \xrightarrow{d}$$
Poisson(2).

(ii) For k = n - 2,

$$\frac{d_{(n-2)-RF}(\mathcal{T}_1,\mathcal{T}_2) - 2n(1 - e^{-2})}{2\sqrt{(e^{-2} - 3e^{-4})n}} \xrightarrow{d} N(0,1).$$

Khayatian et al. conjectured that the limit distribution at the two boundary cases, i.e., k=0 and k=n-2, should be Poisson.

Theorem (F. & Steel; 2025)

(i) For k = 0,

$$n-1-\frac{d_{0-RF}(\mathcal{T}_1,\mathcal{T}_2)}{2} \xrightarrow{d}$$
Poisson(2).

(ii) For k = n - 2,

$$\frac{d_{(n-2)-RF}(\mathcal{T}_1,\mathcal{T}_2) - 2n(1 - e^{-2})}{2\sqrt{(e^{-2} - 3e^{-4})n}} \xrightarrow{d} N(0,1).$$

For the proof, we can equivalently work with $S_k(\mathcal{T}_1, \mathcal{T}_2)$.

$$k = n - 2$$
 (i)

$$k = n - 2 \text{ (i)}$$

 S_n ... number of splits shared by two random trees T_1 and T_2 of size n. S'_n ... number of shared trivial splits (i.e., common leaves).

$$k = n - 2 \text{ (i)}$$

 S_n ... number of splits shared by two random trees T_1 and T_2 of size n. S'_n ... number of shared trivial splits (i.e., common leaves).

Lemma

As
$$n \to \infty$$
,

$$\frac{S_n - S_n'}{\sqrt{n}} \stackrel{p}{\longrightarrow} 0.$$

$$k = n - 2$$
 (i)

 S_n ... number of splits shared by two random trees T_1 and T_2 of size n. S'_n ... number of shared trivial splits (i.e., common leaves).

Lemma

As $n \to \infty$,

$$\frac{S_n - S_n'}{\sqrt{n}} \stackrel{p}{\longrightarrow} 0.$$

Thus the result follows from:

Proposition

As
$$n \to \infty$$
.

$$\frac{S'_n - ne^{-2}}{\sqrt{(e^{-2} - 3e^{-4})n}} \xrightarrow{d} N(0, 1).$$

$$k = n - 2$$
 (ii)

$$\mathbb{E}(S'_n(S'_n-1)\cdots(S'_n-k+1))$$

$$k = n - 2$$
 (ii)

$$\mathbb{E}(S'_n(S'_n-1)\cdots(S'_n-k+1)) = k! \binom{n}{k}$$

$$k = n - 2$$
 (ii)

$$\mathbb{E}(S_n'(S_n'-1)\cdots(S_n'-k+1)) = k! \binom{n}{k} \left(\frac{(n-k)^{n-k-2}(n-k)^k}{n^{n-2}}\right)^2$$

$$k = n - 2$$
 (ii)

$$\mathbb{E}(S'_n(S'_n - 1) \cdots (S'_n - k + 1)) = k! \binom{n}{k} \left(\frac{(n - k)^{n - k - 2} (n - k)^k}{n^{n - 2}} \right)^2$$
$$= k! \binom{n}{k} \left(1 - \frac{k}{n} \right)^{2n - 4}.$$

$$k = n - 2$$
 (ii)

$$\mathbb{E}(S'_n(S'_n - 1) \cdots (S'_n - k + 1)) = k! \binom{n}{k} \left(\frac{(n-k)^{n-k-2} (n-k)^k}{n^{n-2}} \right)^2$$
$$= k! \binom{n}{k} \left(1 - \frac{k}{n} \right)^{2n-4}.$$

Corollary

(i) $\mathbb{E}(S'_n) \sim ne^{-2}$ and $Var(S'_n) \sim (e^{-2} - 3e^{-4})n$.

$$k = n - 2$$
 (ii)

$$\mathbb{E}(S'_n(S'_n - 1) \cdots (S'_n - k + 1)) = k! \binom{n}{k} \left(\frac{(n-k)^{n-k-2} (n-k)^k}{n^{n-2}} \right)^2$$
$$= k! \binom{n}{k} \left(1 - \frac{k}{n} \right)^{2n-4}.$$

Corollary

- (i) $\mathbb{E}(S'_n) \sim ne^{-2}$ and $Var(S'_n) \sim (e^{-2} 3e^{-4})n$.
- (ii) For $m \ge 1$,

$$\mathbb{E}\left(\left(\frac{S_n' - ne^{-2}}{\sqrt{(e^{-2} - 3e^{-4})n}}\right)^m\right) \sim \begin{cases} m!/(2^{m/2}(m/2)!), & \text{if } m \text{ is even;} \\ 0, & \text{if } m \text{ is odd.} \end{cases}$$

$$k = n - 2$$
 (iii)

One can also directly work with factorial moments.

$$k = n - 2$$
 (iii)

One can also directly work with factorial moments.

Theorem (Gao & Wormald; 2004)

Let $s_n > -\mu_n^{-1}$ and

$$\sigma_n = \sqrt{\mu_n + \mu_n^2 s_n},$$

where $0 < \mu_n \to \infty$ and $\mu_n = o(\sigma_n^3)$. Let X_n be a sequence of RVs with

$$\mathbb{E}(X_n(X_n-1)\cdots(X_n-k+1)) \sim \mu_n^k e^{k^2 s_n/2}$$

uniformly for $c\mu_n/\sigma_n \le k \le c'\mu_n/\sigma_n$, where c' > c > 0.

Then, as $n \to \infty$,

$$\frac{X_n - \mu_n}{\sigma_n} \xrightarrow{d} N(0,1).$$

4 D > 4 D > 4 E > 4 E > 9 Q I

$$k = n - 2 \text{ (iv)}$$

$$k = n - 2$$
 (iv)

(i) Use the (known) limit distribution result for the number of leaves a random Cayley tree.

$$k = n - 2$$
 (iv)

- (i) Use the (known) limit distribution result for the number of leaves a random Cayley tree.
- (ii) S'_n ... number of empty boxes when throwing 2n-4 balls uniformly at random into n urns.

$$k = n - 2 \text{ (iv)}$$

- (i) Use the (known) limit distribution result for the number of leaves a random Cayley tree.
- (ii) S_n' ... number of empty boxes when throwing 2n-4 balls uniformly at random into n urns.
 - → Use results for urn models.

$$k = n - 2 \text{ (iv)}$$

- (i) Use the (known) limit distribution result for the number of leaves a random Cayley tree.
- (ii) S'_n ... number of empty boxes when throwing 2n-4 balls uniformly at random into n urns.
 - → Use results for urn models.
- (iii) Let $P_n(z)$ be the probability-generating function of S'_n .

$$k = n - 2 \text{ (iv)}$$

- (i) Use the (known) limit distribution result for the number of leaves a random Cayley tree.
- (ii) S_n' ... number of empty boxes when throwing 2n-4 balls uniformly at random into n urns.
 - → Use results for urn models.
- (iii) Let $P_n(z)$ be the probability-generating function of S'_n . Then,

$$P_n(y) = \frac{(2n-4)!}{n^{2n-4}} [z^{2n-4}] (e^z + y - 1)^n.$$

$$k = n - 2 \text{ (iv)}$$

- (i) Use the (known) limit distribution result for the number of leaves a random Cayley tree.
- (ii) S_n' ... number of empty boxes when throwing 2n-4 balls uniformly at random into n urns.
 - → Use results for urn models.
- (iii) Let $P_n(z)$ be the probability-generating function of S'_n . Then,

$$P_n(y) = \frac{(2n-4)!}{n^{2n-4}} [z^{2n-4}] (e^z + y - 1)^n.$$

Now, use saddle point method.

$$k = 0$$
 (i)

$$k = 0$$
 (i)

$$\mathbb{E}(S_n) = \binom{n}{2}$$

$$k = 0$$
 (i)

$$\mathbb{E}(S_n) = \binom{n}{2} \left(\frac{1}{n^{n-2}} \right)$$

$$k = 0$$
 (i)

$$\mathbb{E}(S_n) = \binom{n}{2} \left(\frac{\sum_{k=1}^{n-1} \binom{n-2}{k-1} k^{k-2} (n-k)^{n-k-2}}{n^{n-2}} \right)^2$$

$$k = 0$$
 (i)

$$\mathbb{E}(S_n) = \binom{n}{2} \left(\frac{\sum_{k=1}^{n-1} \binom{n-2}{k-1} k^{k-2} (n-k)^{n-k-2}}{n^{n-2}} \right)^2 = \binom{n}{2} \left(\frac{2}{n} \right)^2$$

$$k = 0$$
 (i)

$$\mathbb{E}(S_n) = \binom{n}{2} \left(\frac{\sum_{k=1}^{n-1} \binom{n-2}{k-1} k^{k-2} (n-k)^{n-k-2}}{n^{n-2}} \right)^2 = \binom{n}{2} \left(\frac{2}{n} \right)^2 = \frac{2(n-1)}{n}.$$

$$k = 0$$
 (i)

Note:

$$\mathbb{E}(S_n) = \binom{n}{2} \left(\frac{\sum_{k=1}^{n-1} \binom{n-2}{k-1} k^{k-2} (n-k)^{n-k-2}}{n^{n-2}} \right)^2 = \binom{n}{2} \left(\frac{2}{n} \right)^2 = \frac{2(n-1)}{n}.$$

Similarly, one can compute the second factorial moments by considering the number of trees which contain two different fixed edges.

$$k = 0$$
 (i)

Note:

$$\mathbb{E}(S_n) = \binom{n}{2} \left(\frac{\sum_{k=1}^{n-1} \binom{n-2}{k-1} k^{k-2} (n-k)^{n-k-2}}{n^{n-2}} \right)^2 = \binom{n}{2} \left(\frac{2}{n} \right)^2 = \frac{2(n-1)}{n}.$$

Similarly, one can compute the second factorial moments by considering the number of trees which contain two different fixed edges.

Proposition

The number of Cayley trees which contain a spanning forest F consisting of m trees equals:

$$q_1 \cdots q_m n^{m-2}$$
,

where q_i denotes the number of vertices in the *i*-th tree in F.

12 / 16

$$k = 0$$
 (i)

Note:

$$\mathbb{E}(S_n) = \binom{n}{2} \left(\frac{\sum_{k=1}^{n-1} \binom{n-2}{k-1} k^{k-2} (n-k)^{n-k-2}}{n^{n-2}} \right)^2 = \binom{n}{2} \left(\frac{2}{n} \right)^2 = \frac{2(n-1)}{n}.$$

Similarly, one can compute the second factorial moments by considering the number of trees which contain two different fixed edges.

Proposition (Moon; 1970)

The number of Cayley trees which contain a spanning forest F consisting of m trees equals:

$$q_1 \cdots q_m n^{m-2}$$
,

where q_i denotes the number of vertices in the *i*-th tree in F.

12 / 16

$$k = 0$$
 (ii)

$$S_n = \sum_{u,v} X_{u,v},$$

where $X_{u,v} = 1$ if $\{u, v\}$ is a common edge and 0 otherwise.

$$k = 0$$
 (ii)

$$S_n = \sum_{u,v} X_{u,v},$$

where $X_{u,v} = 1$ if $\{u, v\}$ is a common edge and 0 otherwise.

 $N_{u,v}$... contains $\{u,v\}$ and all other edges incident to $\{u,v\}$ in K_n .

$$k = 0$$
 (ii)

$$S_n = \sum_{u,v} X_{u,v},$$

where $X_{u,v} = 1$ if $\{u, v\}$ is a common edge and 0 otherwise.

 $N_{u,v}$... contains $\{u,v\}$ and all other edges incident to $\{u,v\}$ in K_n .

Observation: $X_{u,v}$ is independent of $(X_{r,s} : \{r,s\} \notin N_{u,v})$.

$$k = 0$$
 (ii)

$$S_n = \sum_{u,v} X_{u,v},$$

where $X_{u,v} = 1$ if $\{u, v\}$ is a common edge and 0 otherwise.

 $N_{u,v}$... contains $\{u,v\}$ and all other edges incident to $\{u,v\}$ in K_n .

Observation: $X_{u,v}$ is independent of $(X_{r,s} : \{r,s\} \notin N_{u,v})$.

Thus, one can use the "dissociated case" of the Stein-Chen bound to prove the following result:

Proposition

We have,

$$d_{TV}(S_n, Poisson(2(n-1)/n)) = O(1/n).$$

$$k = 0$$
 (iii)

$$k = 0$$
 (iii)

Proposition (F. & Yeh)

The number of rooted Cayley trees which contain a spanning forest F consisting of m rooted trees equals:

$$n^{m-3}$$
.

$$k = 0$$
 (iii)

Proposition (F. & Yeh)

The number of rooted Cayley trees which contain a spanning forest F consisting of m rooted trees equals:

$$n^{m-3}$$
.

Theorem (F. & Yeh)

For k = 0,

$$n-1-\frac{\vec{d}_{0-RF}(\mathcal{T}_1,\mathcal{T}_2)}{2} \xrightarrow{d} \text{Poisson}(1).$$

$$k = 0$$
 (iii)

Proposition (F. & Yeh)

The number of rooted Cayley trees which contain a spanning forest F consisting of m rooted trees equals:

$$n^{m-3}$$
.

Theorem (F. & Yeh)

For k = 0,

$$n-1-\frac{\vec{d}_{0-RF}(\mathcal{T}_1,\mathcal{T}_2)}{2} \xrightarrow{d} \text{Poisson}(1).$$

On the other hand, the result for k = n - 2 remains unchanged.

14 / 16

• Our results explain the previous simulation result.

- Our results explain the previous simulation result.
- For unrooted and rooted Cayley trees, the results are the same for k = n 2 but slightly different for k = 0.

- Our results explain the previous simulation result.
- For unrooted and rooted Cayley trees, the results are the same for k = n 2 but slightly different for k = 0.
- For k = n 3, the limit law is again normal; for k = 1, the limit law is (degenerate) Poisson.

- Our results explain the previous simulation result.
- For unrooted and rooted Cayley trees, the results are the same for k=n-2 but slightly different for k=0.
- For k = n 3, the limit law is again normal; for k = 1, the limit law is (degenerate) Poisson.

Question: What happens for $2 \le k \le n-4$? Where does the limit law change from Poisson to normal?

- Our results explain the previous simulation result.
- For unrooted and rooted Cayley trees, the results are the same for k = n 2 but slightly different for k = 0.
- For k = n 3, the limit law is again normal; for k = 1, the limit law is (degenerate) Poisson.

Question: What happens for $2 \le k \le n-4$? Where does the limit law change from Poisson to normal?

In the recent paper

E. Khayatian and L. Zhang. Simple k-RF Metrics for Comparison of Labeled DAGs, bioRxiv

a central limit theorem is conjectured for $d_{k-s-RF}(\mathcal{T}_1,\mathcal{T}_2)$ for $1 \le k \le n-1$.

- Our results explain the previous simulation result.
- For unrooted and rooted Cayley trees, the results are the same for k = n 2 but slightly different for k = 0.
- For k = n 3, the limit law is again normal; for k = 1, the limit law is (degenerate) Poisson.

Question: What happens for $2 \le k \le n-4$? Where does the limit law change from Poisson to normal?

- In the recent paper
 - E. Khayatian and L. Zhang. Simple k-RF Metrics for Comparison of Labeled DAGs, bioRxiv
 - a central limit theorem is conjectured for $d_{k-s-RF}(\mathcal{T}_1, \mathcal{T}_2)$ for $1 \le k \le n-1$. This conjecture can also be proved with our tools (joint with Bernhard Gittenberger, TU Wien).

Reference

M. Fuchs and M. Steel. The asymptotic distribution of the k-Robinson-Foulds dissimilarity measure on labeled trees, Journal of Comput. Biol., in press.

Reference

M. Fuchs and M. Steel. The asymptotic distribution of the k-Robinson-Foulds dissimilarity measure on labeled trees, Journal of Comput. Biol., in press.

Thanks for the attention!