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Phylogenetic Trees

X . . . a finite set.

Theorem

A phylogenetic tree is a rooted, non-plane, binary tree with leaves labeled
by X.

Tn . . . # of phylogenetic trees with n leaves.

Theorem (Schröder; 1870)

We have,
Tn = (2n− 3)!!.

Thus, as n→ ∞,

Tn ∼ 1√
2

(
2

e

)n

nn−1.
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Patterns in Phylogenetic Trees (i)

P . . . a rooted, non-plane, binary tree with k (unlabeled) leaves.

Question: how often does P appear in a random phylogenetic tree as
fringe subtree?

Random Models:

Uniform model: every phylogenetic tree of size n is equally likely;

Yule-Harding model: defined via a tree evolution process.

Theorem

Expected value and variance of the number Xn of occurrences of P are
both linear. Moreover,

Xn − E(Xn)√
Var(Xn)

d−→ N(0, 1).
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Patterns in Phylogenetic Trees (ii)

Xn,k . . . # of occurrences of a pattern of size k in a random phylogenetic
tree of size n.

Theorem (Chang and F.; 2010)

(i) As E(Xn,k) → ∞,

sup
−∞<x<∞

∣∣∣∣∣P
(
Xn,k − E(Xn,k)√

Var(Xn,k)
≤ x

)
− Φ(x)

∣∣∣∣∣ = O

(
1√

Var(Xn,k)

)
.

(ii) As k → ∞,

dTV (Xn,k,Poisson(E(Xn,k))) −→ 0, (n→ ∞).

H. Chang and M. Fuchs (2010). Limit theorems for patterns in
phylogenetic trees, J. Math. Biol., 60:4, 481–512.
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Phylogenetic Networks

X . . . a finite set.

Definition

A phylogenetic network is a rooted DAG which has the following nodes:

(a) root: in-degree 0 and out-degree 1;

(b) leaves: in-degree 1 and out-degree 0; bijectively labeled by X;

(c) all other nodes have either out-degree 2 and in-degree 1 (tree nodes)
or out-degree 1 and in-degree 2 (reticulation nodes).

Phylogenetic networks have become increasingly popular in recent decades.

They are used to model reticulate evolution which contains reticulation
events caused by, e.g., lateral gene transfer or hybridization.
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TC-Networks

Definition

A phylogenetic network is called tree-child network if every non-leaf node
has at least one child which is not a reticulation node.

Examples:

(a)

ρ

2

1
3

(b)

ρ

4
2

1
3

Figure: (a) is not a tc-network whereas (b) is a tc-network.
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Enumeration and Pattern Counting in TC-Networks

TCn . . . # of tc-networks with n leaves.

Theorem (F., Yu, Zhang; 2021)

We have,

TCn = Θ

(
n−2/3ea1(3n)

1/3

(
12

e2

)n

n2n
)
,

where a1 is the largest root of the Airy function of first order.

Theorem (McDiarmid, Semple, Welsh; 2015)

The number of cherries is o(n) for almost all tc-networks.

Theorem (Chang, F., Liu, Wallner, Yu; 2023+)

We have,
E(# of cherries) = O(1).
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Ranked TC-Networks (i)

F. Bienvenu, A. Lambert, M. Steel (2022). Combinatorial and stochastic
properties of ranked tree-child networks, Random Struc. Algor., 60:4,
653–689.

Define two types of events:

branching event

(a)

reticulation event

(b)

Definition

A ranked tc-network is a tc-network which is drawn starting with a
branching event and consecutively adding either a branching event or a
reticulation event until all events are used.
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Ranked TC-Networks (ii)

5

7

2
4

1 8

3 6

5 2 7 4 1 8 3 6

(a) (b)

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t

Question: which tc-networks are rankable?

Theorem (Bienvenu, Lambert, Steel; 2022)

The number of rankable tc-networks with n leaves is o(TCn).
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Counting Ranked TC-Networks (i)

RTCn,k . . . # of ranked tc-networks with k reticulation nodes.

Theorem (Bienvenu, Lambert, Steel; 2022)

We have,

RTCn,k =

[
n− 1

n− 1− k

]
· n!(n− 1)!

2n−1
,

where
[

n−1
n−1−k

]
denotes the unsigned Stirling numbers of first kind and

n!(n− 1)!/2n−1 is the number of ranked trees.

Corollary

We have,

# of reticulation nodes− n+ log n√
log n

d−→ N(0, 1).
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Counting Ranked TC-Networks (ii)

RTCn . . . # of ranked tc-networks with n leaves.

Corollary

We have,

RTCn =
n!(n− 1)!2

2n−1
.

This is A167484 in the OEIS (www.oeis.org):

Assume that n people are on one side of a river. Then, this sequences
is the number of ways to cross to the other side with a two-person
boat if the crossings follow the pattern 2 sent, 1 returns, 2 sent, 1
returns, ..., 2 sent.

Caraceni, F., Yu (2022) found a natural bijection −→ Guan-Ru Yu’s talk.

Michael Fuchs (NCCU) Ranked TC-Networks September 6th, 2022 11 / 24



Counting Ranked TC-Networks (ii)

RTCn . . . # of ranked tc-networks with n leaves.

Corollary

We have,

RTCn =
n!(n− 1)!2

2n−1
.

This is A167484 in the OEIS (www.oeis.org):

Assume that n people are on one side of a river. Then, this sequences
is the number of ways to cross to the other side with a two-person
boat if the crossings follow the pattern 2 sent, 1 returns, 2 sent, 1
returns, ..., 2 sent.

Caraceni, F., Yu (2022) found a natural bijection −→ Guan-Ru Yu’s talk.

Michael Fuchs (NCCU) Ranked TC-Networks September 6th, 2022 11 / 24



Counting Ranked TC-Networks (ii)

RTCn . . . # of ranked tc-networks with n leaves.

Corollary

We have,

RTCn =
n!(n− 1)!2

2n−1
.

This is A167484 in the OEIS (www.oeis.org):

Assume that n people are on one side of a river. Then, this sequences
is the number of ways to cross to the other side with a two-person
boat if the crossings follow the pattern 2 sent, 1 returns, 2 sent, 1
returns, ..., 2 sent.

Caraceni, F., Yu (2022) found a natural bijection −→ Guan-Ru Yu’s talk.

Michael Fuchs (NCCU) Ranked TC-Networks September 6th, 2022 11 / 24



Counting Ranked TC-Networks (ii)

RTCn . . . # of ranked tc-networks with n leaves.

Corollary

We have,

RTCn =
n!(n− 1)!2

2n−1
.

This is A167484 in the OEIS (www.oeis.org):

Assume that n people are on one side of a river. Then, this sequences
is the number of ways to cross to the other side with a two-person
boat if the crossings follow the pattern 2 sent, 1 returns, 2 sent, 1
returns, ..., 2 sent.

Caraceni, F., Yu (2022) found a natural bijection −→ Guan-Ru Yu’s talk.

Michael Fuchs (NCCU) Ranked TC-Networks September 6th, 2022 11 / 24



Patterns in Ranked Tree-Child Networks

Consider the following stochastic process:

(a) Start with a branching event;

(b) In the ℓ− 1-st step pick uniformly at random a tuple (ℓ1, ℓ2) of
lineages;

(c) If ℓ1 = ℓ2 attach a branching event to lineage ℓ1;

(d) If ℓ1 ̸= ℓ2 attach a reticulation event to ℓ1, ℓ2;

(e) Stop once n lineages are obtained.

Xn . . . # of occurrences of a pattern in the resulting tree.

Lemma

Xn has the same distribution as the number of occurrences of the pattern
in a random ranked tc-network with n leaves.
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Cherries and Tridents

Cn . . . # of cherries of a random ranked tc-network of size n;

Tn . . . # of tridents of a random ranked tc-network of size n.

Theorem (Bienvenu, Lambert, Steel; 2022)

We have, Cn
d−→ Poisson(1/4).

We have, Tn/n
P−→ 1/7.

We have T2 = 1 and

(Tn+1|Tn = j) =


j − 1, with probability 3j(3j − 2)/n2;

j + 1, with probability (n− 3j)(n− 3j − 1)/n2;

j, otherwise.
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CLT for Tridents (i)

Let µn := E(Tn).

Then,

µn+1 =

(
1− 3

n

)
µn + 1− 1

n
.

This recurrence can be (easily) solved.

Proposition

We have,

E(Tn) =
(15n3 − 85n2 + 144n− 71)n

105(n− 1)(n− 2)(n− 3)

Set
ϕn,m := E(Tn − µn)

m,

i.e., ϕn,m is the m-th central moment of Tn.
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CLT for Tridents (ii)

The m-th central moment satisfies:

ϕn+1 =
(
1− κ

n

)2
ϕn + ψn,

with κ = 3m and ψn depends on k-th central moments with k < m.

Lemma

If ψn ∼ cnα with α > −2κ− 1, then ϕn ∼ cnα+1/(2κ+ α+ 1).

Proposition

For m ≥ 2,

E(Tn − µn)
m ∼ E(N(0, 1)m)

(
24

637

)m/2

nm/2.
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CLT for Tridents (iii)

Theorem

Assume that E(Xk
n) −→ mk for all k ≥ 1.

Then, there exists a distribution X with E(Xk) = mk.

Moreover, if X is uniquely characterised by its sequence of moments, then

Xn
d−→ X.

Theorem (F., Liu, Yu; 2023)

We have,
Tn − n/7√
24n/637

d−→ N(0, 1).
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Patterns of Height 2

(i)

(ii)

(a) (b) (c)

(i)

(iii)

(i)

(ii)

(ii)

(iv) (v)
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Limit Laws for Patterns of Height 2

Theorem (F., Liu, Yu; 2023)

(a) The patterns in (a) have a degenerate limit law. More precisely,

Xn
L1−→ 0.

(b) For the patterns in (b), we have

Xn
d−→ Poisson(λ),

where λ = 1/8 or 1/28 or 1/56 or 1/14 or 1/28.

(c) For the patterns in (c), we have

Xn − µn

σ
√
n

d−→ N(0, 1).
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Pattern (b-iv)

A B typetype type C

(a) (b) (c)

type A type B probability

A −1 0 4a/n2

B 0 −1 3b/n2

C 0 0 c/n2

type A type B probability

A
−1 +1 8a/n2

0 0 4a/n2

A & A
−2 +1 9a(a − 1)/n2

−2 +2 6a(a − 1)/n2

−2 +3 a(a − 1)/n2

B
0 0 2b/n2

+1 −1 4b/n2

B & B 0 −1 9b(b − 1)/n2

C & C 0 +1 c(c − 1)/n2

A & B
−1 0 18ab/n2

−1 +1 6ab/n2

A & C
−1 +1 6ac/n2

−1 +2 2ac/n2

B & C 0 0 6bc/n2

Proposition

We have,

E(Xr
nT

s
n) ∼

ns

14r7s
.
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Pattern (c-i)

A B typetype type C

(a) (b)

type D

We have,

E(Xn) =
(1080n5−16668n4+96992n3−261735n2+319471n−135654)n

20790(n−1)(n−2)(n−3)(n−4)(n−5)

and

E(Yn)=
2(4290n7−125730n6+1509970n5−9550275n4+33968326n3−66905671n2+66128140n−24510098)n

1576575(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)(n−7)

where Yn is the number of occurrences of (a).
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Limit Law of Pattern (c-i)

Proposition

We have,

E((Yn − E(Tn))r(Xn − E(Xn))
s(Tn − E(Tn))t) ∼ E(N r

1N
s
2N

t
3)n

(r+s+t)/2.

where (N1, N2, N3) has distribution N(0,Σ) with

Σ =


1002796

203664825
433528

62537475
−32
13377

433528
62537475

4575916
137582445 − 608

119119

−32
13377 − 608

119119
24
637

 .
Thus,

1√
n
(Yn − E(Yn), Xn − E(Xn), Tn − E(Tn))

d−→ N(0,Σ).
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Conjecture for general Patterns

Let F be a general pattern.

Denote by P resp. P1 and P2 the patterns obtained by removing the last
event.

Conjecture

(a) If P is a normal pattern, then F is a Poisson pattern; in all other
cases, F is a degenerate pattern.

(b) If P1, P2 are both normal patterns, then F is a normal pattern; if P1

is a normal pattern and P2 is a Poisson pattern or vice versa, then F
is a Poisson pattern; in all other cases, F is a degenerate pattern.

The proof would require a less computational-intensive approach.
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Some Open Problems

Proof of the conjecture?

How to study patterns for other classes of phylogenetic networks, e.g.,
tc-networks?

Ranking can also be introduced for other classes of phylogenetic
networks, e.g., ranked galled trees.

They are counted by the recurrence

u(n,k)=ku(n−1,k−1)+((n2)−(
2k
2 ))u(n−1,k)+3(n−2k

3 )u(n−1,k+1),

where u(n, 0) is the number of ranked galled trees with n leaves.

Asymptotics of u(n, 0)?

How about stochastic results for random ranked galled trees?
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