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Abstract. Enumerative study of RNA secondary structures according to various charac-

teristics is a topic of key importance in computational biology. RNA secondary structure

pairs have been also studied in various contexts. Recently, the homology groups of the

simplicial complices induced by pairs of secondary structures have been studied by Bura,

He and Reidys, providing a new way for characterizing these structure pairs. In particu-

lar, the homology group H2 corresponding to any pair has been shown to be a free group.

In this paper, we provide enumerative results, both exactly and asymptotically, for those

pairs giving a free group of rank zero. The asymptotic number of these structure pairs of

length n is shown to be cn−3/24.8105752536n. We also prove that the distribution of the
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number of base pairs in those pairs of secondary structures is asymptotically normal.
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1 Introduction

Ribonucleic acid (RNA) plays an important role in various biological processes within

cells, ranging from catalytic activity to gene expression. An RNA molecule may consist

of four types of bases: A (adenine), U (uracil), G (guanine), and C (cytosine). These

bases form base pairs where A pairs with U while G pairs with C (and sometimes the

non-Watson-Crick base pair G with U). The configuration representing the pairing relation

of the bases in an RNA is referred to as the secondary structure of the RNA.

More than four decades ago, Waterman and his coworkers pioneered the combinatorics

of RNA secondary structures [21–23]. Since then, the combinatorics of RNA secondary

structures has been one of the most important topics in computational biology, see [3–6,

10–12,15–20] and references therein. The notion of bi-secondary structures was introduced

by Haslinger and Stadler [13] in order to study pseudoknotted structures. Informally, a

bi-secondary structure is a secondary structure with possibly crossing base pairs such that

there exists a way of partitioning the base pairs into two families and each family does

not have crossing base pairs. As such, bi-secondary structures can be viewed as pairs

of secondary structures of the same length without pseudoknots (i.e., without crossing

pairs), and they are also studied in other contexts, for example, RNA riboswitches (i.e.,

base sequences that exhibit two stable configurations [9]). Recently, the homology of

simplicial complices built from pairs of RNA secondary structures has been studied by

Bura, He and Reidys [1, 2]. As for the associated homology groups, H2 is particularly

interesting. It is proved that for any pair of secondary structures, H2 is a free group of
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rank k for some k ≥ 0. In [2], a combinatorial characterization for the pairs of secondary

structures which give rise to a rank k group H2 is provided. As such, the problem of

enumerating pairs of secondary structures according to the ranks of their corresponding

group H2 is naturally motivated. In this paper, we only enumerate these pairs with H2

being of rank zero. It is worth noting that a bi-secondary structure may admit multiple

different partitions into a pair of secondary structures without pseudoknots, but all such

pairs give the sameH2. See [2]. Our computation here distinguishes two pairs of secondary

structures representing the same bi-secondary structure, and explicitly enumerating bi-

secondary structures according to their H2 ranks is open.

The paper is organized as follows. In Section 2, we give a brief review of RNA sec-

ondary structures and their loop homology. We obtain some functional equations satisfied

by the generating functions counting pairs of secondary structures giving a rank zero H2,

with or without tracking the number of base pairs, in Section 3. In Section 4, based on

the functional equations obtained in the previous section, we derive some asymptotics

and a central limit theorem regarding the distribution of the number of base pairs.

2 RNA loop homology

Recall RNA secondary structures (without pseudoknots) defined in Waterman [23]. An

RNA secondary structure of length n is a simple labeled graph with vertices in [n] =

{1, 2, . . . , n} and edges in E that satisfies:

• if (i, j) ∈ E, then |i− j| ≥ 2;

• if (i, j) ∈ E and (k, l) ∈ E, where i < j and k < l, and [i, j]
⋂
[k, l] �= ∅, then either

[i, j] ⊂ [k, l] or [k, l] ⊂ [i, j] (where [i, j] denotes the interval {r : i ≤ r ≤ j}).

The vertices represent the bases while the edges represent the base pairs of an RNA.

We represent an RNA secondary structure as a diagram with all vertices arranged in a
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horizontal line and its edges as arcs in the upper (or lower) half-plane. According to the

above definition, any two arcs do not cross. A vertex not incident to any arc is called an

isolated base. We say an arc (i1, j1) (resp. an isolated base k) is covered by an arc (i, j)

if [i1, j1] ⊂ [i, j] (resp. k ∈ [i, j]).

Loops in RNA secondary structures have been extensively studied due to their im-

portance for certain energy models predicting the folded secondary structure of a given

RNA base sequence. Following [1], a loop s is a subset of vertices, represented as a union

of intervals, s =
⋃k

i=1[ai, bi], such that (a1, bk) and (bi, ai+1), for 1 ≤ i < k, are arcs and

such that any other interval-vertices are isolated bases. If k + 1 loops (as subsets) have

a non-empty intersection, then they induce a k-simplex. As such, a simplicial complex

can be constructed from the disjoint union of loops of a pair of secondary structures of

the same length by including all possible induced simplices. In [1], the homology group

of the constructed simplicial complex of a pair of RNA secondary structures were inves-

tigated. It was proved H2 is a free group of rank k for some k ≥ 0. In a later paper [2],

a combinatorial characterization for the pairs of secondary structures which give rise to

a rank k group H2 is provided. In summary, the rank k is determined by the number of

crossing components in the pair of structures under consideration, and we will not go to

details and refer to [1, 2].

Here we merely deal with the secondary structure pairs whose H2 group is rank 0, i.e.,

trivial. According to [2], these pairs are those with no crossing arcs where one arc is from

the first secondary structure and the other belongs to the secondary structure. That is,

for a pair (S, T ) of RNA secondary structures of length n, there do not exist a base pair

(i1, i2) from S and a base pair (j1, j2) from T such that i1 < j1 < i2 < j2. See an example

in Figure 1, where the arcs of S are placed in the upper half-plane while the arcs of T are

placed in the lower half-plane. The main task of this paper is enumerating these pairs of

RNA secondary structures.
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Figure 1: An example of a pair of RNA secondary structures of length 15 with its homology
group H2 being of rank zero.

3 Exact enumeration

Let

F (x, y) =
∑

n≥0,k≥0

fn,kx
nyk,

where fn,k is the number of pairs of secondary structures of length n and having in total k

base pairs which give a rank zero H2. We make the convention f0,0 = 1. Thus, F (x, y)−1

is the generating function for the corresponding pairs of non-empty (i.e., with at least one

base) secondary structures.

Now we are ready to present our first main result.

Theorem 3.1. The function F (x, y) satisfies the following relation:

F (x, y) = 1 + xF (x, y) + x2y(y + 2)F (x, y)[F (x, y)− 1]

+ 2xyG(x, y)[3F (x, y)− 1] + 2yG(x, y)2 +
2x4y4[F (x, y)− 1]3F (x, y)

1− x2y2[F (x, y)− 1]2

+
2yG(x, y)F (x, y)(x2y[F (x, y)− 1] + xyG(x, y))

1− xy[F (x, y)− 1]
, (1)

where G(x, y) = x2yF (x,y)[F (x,y)−1]
1+xy−2xyF (x,y)

.
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Proof. It is crucial to define an auxiliary function

G(x, y) =
∑

n≥3,k≥1

gn,kx
nyk,

where gn,k is the number of pairs of secondary structures (S, T ) of length n and k arcs in

total such that base 1 (i.e., the leftmost base) is paired and only paired in S. Obviously,

G(x, y) also counts the number of pairs (S, T ) where the rightmost base is paired and

only paired in S.

For a pair of non-empty secondary structures (S, T ), base 1 (the leftmost base) is

clearly either not paired in both S and T , or paired in at least one structure. We next

consider their respective contributions to F (x, y). These pairs of the former obviously

contribute xF (x, y). For the latter, we distinguish the cases as follows:

• Case 1: If both S and T have (1, k) for some k > 1 as a base pair, then these structure

pairs contribute x2y2F (x, y)[F (x, y) − 1]. Namely, the pair (1, k) contributes x2y2,

the structure covered by the arc (1, k) which cannot be empty by definition (i.e.,

two adjacent bases cannot form an arc) contributes F (x, y) − 1, and the structure

to the right of the arc (1, k) (which may be empty) contributes F (x, y).

• Case 2: (1, k) is a base pair in S and j < k if (1, j) is a base pair in T .

• Case 3: (1, k) is a base pair in T and j < k if (1, j) is a base pair in S.

Case 2 and Case 3 are essentially the same since turning a pair in Case 2 upside down

gives rise to a pair in Case 3. So we shall only discuss Case 2 here. We classify the

structure pairs of Case 2 into categories below:

2(i) The category that both 1 and k are not paired in T gives x2yF (x, y)[F (x, y) − 1].

See Figure 2 for an illustration. In Figure 2 and those coming later, F stands for

F (x, y) and G stands for G(x, y).
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Figure 2: An illustration for 2(i) structure pairs.

2(ii) Note that in Case 2, if 1 is paired in T , it can be only paired with j for j < k by

assumption. Suppose (1, j) for j < k is a pair in T and k is not paired in T . Then,

the contribution of these structures is xyG(x, y)F (x, y). Due to the noncrossing

property, these structure pairs can be first regarded as two independent parts: the

structure on [k] and the remaining part which is counted by F (x, y). For the part

on [k], if the arc (1, k) and base k are removed, the remaining is easily seen to be

counted by G(x, y). Since there is only one way to put base k and the arc (1, k)

back, we just need to add a factor xy (for base k and the arc).

1 k

y

G F

x

Figure 3: An illustration for 2(ii) structure pairs.

2(iii) Suppose 1 is not paired in T and k is paired in T . There are two cases: (a) k is paired

with a base on its righthand side, and (b) k is paired with a base on its lefthand

side. For a pair in case (a), base 1 and the arc (1, k) contributes xy, the necessarily

non-empty structure covered by (1, k) contributes F (x, y) − 1, and the remaining

part may be viewed as a pair with k as the leftmost base and paired and only

paired in T whence contributing G(x, y). Thus, the pairs in case (a) are counted by

xyG(x, y)[F (x, y)− 1]. For a pair in case (b), base 1 and the arc (1, k) contributes

xy, the structure on [k] with base 1 and the arc (1, k) removed contributes G(x, y),
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and the structure (possibly empty) to the right of k is clearly counted by F (x, y).

Thus, the pairs in case (b) are counted by xyG(x, y)F (x, y). In summary, the two

cases (a) and (b) together contribute xyG(x, y)[2F (x, y)− 1].

1 k
F-1

y

x

G
(a) 2(iii)(a)

x
1 k

G F

y

(b) 2(iii)(b)

Figure 4: Illustrations for 2(iii) structure pairs.

2(iv) Consider the pairs where both 1 and k are paired in T but (1, k) is not a base pair

in T (i.e., excluding those of Case 1). We distinguish three subcases:

(a) k is paired with a base on its righthand side. This subcase is similar to the

case 2(iii)(a) and contributes yG(x, y)2.

1 k
G G

y

Figure 5: An illustration for 2(iv)(a) structure pairs.

(b) k is paired with a base on its lefthand side, and 1 and k are connected by a

sequence of alternating arcs, i.e., for some r ≥ 1 and for 1 < t1 < t2 < · · · <
t2r+1 = k, (1, t1) and (ti, ti+1) (for 1 ≤ i ≤ 2r) are base pairs. Note that

by construction, (1, t1) is a base pair in T , (t1, t2) is a base pair in S, (t2, t3)

is a base pair in T , and so on. Moreover, inside each such an arc there is a

non-empty structure. Thus, the structure on [k] contributes

∑
r≥1

x2r+2y2r+2[F (x, y)− 1]2r+1 =
x4y4[F (x, y)− 1]3

1− x2y2[F (x, y)− 1]2
.
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Taking into account the possible empty structure to the right of k, this subcase

contributes x4y4[F (x,y)−1]3F (x,y)
1−x2y2[F (x,y)−1]2

.

y

F-1

y

F-1
y

y

x
1 k

x
t1 t2

FF-1

x x

Figure 6: An illustration for 2(iv)(b) structure pairs.

(c) k is paired with a base on its lefthand side, and 1 and k are not connected

by a sequence of alternating arcs. Suppose for some r ≥ 0 and for t < t1 <

t2 < · · · < tr < k, (1, t), (t, t1) and (ti, ti+1) (for 1 ≤ i < r) are base pairs, and

(tr, z) is not a base pair for any z > tr. First, the part to the right of base k is

obviously F (x, y). As for the part on [k], it can be viewed as three independent

components: the arc (1, k), the one on [tr] (t0 is treated as t) and the rest. For

the one on [tr], depending on whether tr is paired or not, the contributions are

G(x, y)xr+1yr+1[F (x, y) − 1]r and xr+2yr+1[F (x, y) − 1]r+1, respectively. The

arc (1, k) and the rest component together contribute yG(x, y). Hence, for a

fixed r ≥ 0, the contribution of those structure pairs is given by

yF (x, y)G(x, y)
(
xr+2yr+1[F (x, y)− 1]r+1 +G(x, y)xr+1yr+1[F (x, y)− 1]r

)
.

Thus, the overall contribution of this subcase is

yG(x, y)F (x, y)(x2y[F (x, y)− 1] + xyG(x, y))
∑
r≥0

xryr[F (x, y)− 1]r

=
yG(x, y)F (x, y)(x2y[F (x, y)− 1] + xyG(x, y))

1− xy[F (x, y)− 1]
.
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Figure 7: Illustrations for 2(iv)(c) structure pairs.

In summary, we have

F (x, y) = 1 + xF (x, y) + x2y2F (x, y)[F (x, y)− 1]

+ 2×
{
x2yF (x, y)[F (x, y)− 1] + xyG(x, y)[3F (x, y)− 1] + yG(x, y)2

+
x4y4[F (x, y)− 1]3F (x, y)

1− x2y2[F (x, y)− 1]2
+

yG(x, y)F (x, y)[x2y(F (x, y)− 1) + xyG(x, y)]

1− xy[F (x, y)− 1]

}
.

Analogously, for G(x, y), we have the following three cases.

• Case 1′ : If (1, k) for some k > 1 is a pair in S and k is not paired in T , then the

contribution is x2y[F (x, y)− 1]F (x, y).

• Case 2′ : If (1, k) is a base pair in S and (j, k) is a base pair in T for some 1 < j < k,

then this case contributes xyG(x, y)F (x, y).

• Case 3′ : If (1, k) for some k > 1 is a pair in S and k is paired to a base on its

righthand side in T , the contribution is xy[F (x, y)− 1]G(x, y).
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Together we obtain

G(x, y) =
x2[F (x, y)− 1]F (x, y)

1− x[2F (x, y)− 1]
,

completing the proof of the theorem.

We can of course derive from eq. (1) a recurrence for fn,k which is not elegant though.

It seems not easy to derive an explicit formula for F (x, y) and thus for fn,k. But, we will

still be able to obtain some information for fn,k in the next section.

By setting y = 1 in Theorem 3.1, we immediately obtain the following corollary.

Corollary 3.2. Let F (x) =
∑

n≥0 fnx
n, where fn is the number of pairs of secondary

structures of length n which give a rank zero H2 with the convention f0 = 1. Then, we

have

F (x) = 1 + xF (x) + 3x2F (x)[F (x)− 1] + 2xG(x)[3F (x)− 1] + 2G(x)2

+
2x4F (x)[F (x)− 1]3

1− x2[F (x)− 1]2
+

2G(x)F (x)(x2[F (x)− 1] + xG(x))

1− x[F (x)− 1]
(2)

where G(x) = x2F (x)[F (x)−1]
1+x−2xF (x)

.

The first few entries of fn’s are given by

F (x) = 1 + x+ x2 + 4x3 + 14x4 + 50x5 + 191x6 + 751x7 + 3018x8 + 12371x9 + · · · .

Again, although we are not able to obtain an explicit exact formula for fn, we will present

its asymptotical behavior shortly.

4 Asymptotics

In this section, we derive the first-order asymptotics of fn from Corollary 3.2 and show

that fn,k from Theorem 3.1 satisfies a central limit theorem. For this, we need the following
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result from [7]; see also Section 2.2.3 in [8].

Theorem 4.1 (Drmota). Let H(z, w, u) be a function which is analytic at z = w = 0

and u = 1 and satisfies that H(0, w, u) ≡ 0 and H(z, 0, u) �≡ 0. Assume that the Taylor

coefficients of H at z = w = 0 and u = 1 are non-negative. Moreover, assume that there

exist positive z0, w0 inside the domain of analyticity of H(z, w, u) such that

w0 = H(z0, w0, 1), 1 = Hw(z0, w0, 1), Hz(z0, w0, 1) �= 0, Hww(z0, w0, 1) �= 0. (3)

Then, there exits a unique solution of

w(z, u) = H(z, w(z, u), u)

which satisfies w(0, u) = 0 and is analytic at z = 0 and u = 1. Moreover, if the Taylor

coefficients of w(z, 1) at z = 0 are eventually positive, then

[zn]w(z, u) =

√
f(u)Hz(f(u), w(f(u), u), u)

2πHww(f(u), w(f(u), u), u)
f(u)−nn−3/2

(
1 +O(n−1)

)
(4)

uniformly for u sufficiently close to 1, where f(u) is an analytic function at u = 1 with

f(1) = z0 and w(z0, 1) = w0.

Applying this result to F (x) from Corollary 3.2, we obtain the following theorem.

Theorem 4.2. For the number fn of pairs of secondary structures of length n which give

rank zero H2, we have, as n → ∞,

fn = (0.2774624151 · · · )(4.8105752536 · · · )nn−3/2
(
1 +O(n−1)

)
.
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Proof. Set F̃ (x) = F (x)− 1. Then, the result in Corollary 3.2 becomes

F̃ (x) = x[F̃ (x) + 1] + 3x2[F̃ (x) + 1]F̃ (x) + 2xG̃(x)[3F̃ (x) + 2] + 2G̃(x)2

+
2x4[F̃ (x) + 1]F̃ (x)3

1− x2F̃ (x)2
+

2G̃(x)[F̃ (x) + 1][x2F̃ (x) + xG̃(x)]

1− xF̃ (x)
,

where G̃(x) = x2[F̃ (x)+1]F̃ (x)

1−x−2xF̃ (x)
. Thus, if we set

H(z, w) = z(w + 1) + 3z2(w + 1)w +
2z3(3w + 2)(w + 1)w

1− z − 2zw
+

2z4(w + 1)2w2

(1− z − 2zw)2

+
2z4(w + 1)w3

1− z2w2
+

2z4(w + 1)2w2

(1− zw)(1− z − 2zw)
+

2z5(w + 1)3w2

(1− zw)(1− z − 2zw)2
,

then

F̃ (x) = H(x, F̃ (x)).

Consequently, we are in the setting of Theorem 4.1 (without the dependence on u). Note

also that fn is eventually positive. Thus, we only have to check that the function H(z, w)

above satisfies all the required assumptions from Theorem 4.1.

First, H(z, w) clearly satisfies H(0, w) ≡ 0 and H(z, 0) �≡ 0. Moreover, H(z, w) is

analytic, e.g., in the region

D = {(z, w) : |z| < 1/3, |w| < 3/5}

as on D, we have that

|zw| < 1/5 < 1, |z2w2| < 1/25 < 1, and |z + 2zw| = |z| · |1 + 2ω| < 11/15 < 1.
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In addition, the Taylor coefficients of H(z, w) are all positive as

1

1− zw
=

∑
n≥0

znwn,
1

1− z2w2
=

∑
n≥0

z2nw2n,

and

1

1− z − 2zw
=

∑
n≥0

2nzn

(1− z)n+1
wn =

∑
n,m≥0

2n
(
n+m

m

)
zn+mwn.

Thus, what remains is to check (3). First, by solving the first two equations of (3) with

mathematical software, we find that

z0 = 0.2078753469 · · · and w0 = 0.5525053505 · · ·

which lie in D. Next, again with mathematical software,

Hz(z0, w0) = 4.9272739169 · · · �= 0 and Hww(z0, w0) = 2.1174906457 · · · �= 0.

Finally, by plugging everything into (4), we obtain that (where we set u = 1):

fn = (0.2774624151 · · · )(4.8105752536 · · · )nn−3/2(1 +O(n−1))

which is the claimed result.

In Table 1, we present the exact numbers and the asymptotics of fn for some n’s.

Table 1: The exact and asymptotic values of fn for some n.

n exact asymptotic
10 51495 58232.5
20 128387692013 1.36643× 1011

30 473467997674019937 4.93645× 1017

40 2062303553810701768953425 2.128× 1024

50 9855274169521094116453294097221 1.01058× 1031

60 49966511738710622540194605104544479549 5.1023× 1037
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Similarly, we can apply Theorem 4.1 to F (x, y) from Theorem 3.1, where we now have

to consider the dependence in u (with y playing the role of u).

Corollary 4.3. As n → ∞,

∑
k≥0

fn,ku
k = a(u)b(u)−nn−3/2

(
1 +O(n−1)

)

uniformly for u sufficiently close to 1, where a(u) and b(u) are analytic functions at u = 1.

Proof. The proof is as above with the function H(z, w) replaced by

H(z, w, u) = z(w + 1) + z2u(u+ 2)(w + 1)w +
2z3u2(3w + 2)(w + 1)w

1− zu− 2zuw

+
2z4u3(w + 1)2w2

(1− zu− 2zuw)2
+

2z4u4(w + 1)w3

1− z2u2w2
+

2z4u3(w + 1)2w2

(1− zuw)(1− zu− 2zuw)

+
2z5u4(w + 1)3w2

(1− zuw)(1− zu− 2zuw)2

which gives the claimed result with b(u) = f(u) and a(u) as in (4).

From this, we can deduce a central limit theorem with Hwang’s quasi-power theorem;

see [14].

Theorem 4.4 (Hwang). Let Xn be a non-negative integer-valued sequence of random

variables with probability generating function pn(u). Assume that

pn(u) = A(u)B(u)n
(
1 +O(n−1)

)
, (5)

where A(u) and B(u) are analytic functions at u = 1. Define

μ := B′(1) and σ2 := B′′(1) +B′(1)− B′(1)2.
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Then, if σ2 > 0, we have

sup
x

∣∣∣∣∣P
(
Xn − E(Xn)√

Var(Xn)
≤ x

)
− Φ(x)

∣∣∣∣∣ = O (
n−1/2

)
,

where Φ(x) denotes the distribution function of the standard normal distribution. More-

over,

E(Xn) ∼ μn and Var(Xn) ∼ σ2n.

Since we are interested in the number of base pairs of a randomly chosen pair of

secondary structures of length n which give a rank zero H2, we define a sequence of

random variables as

P(Xn = k) =
fn,k
fn

.

Thus, the probability generating function of Xn is given as

pn(u) := E(uXn) =

∑
k≥0 fn,ku

k

fn
.

By Theorem 4.2 and Corollary 4.3, we see that pn(u) satisfies the expansion required in

the quasi-power theorem. Applying it gives the following central limit theorem with rate.

See Figure 8 for an illustration.

Theorem 4.5. For the number Xn of base pairs of a randomly chosen pair of secondary

structures of length n which give a rank zero H2, as n → ∞,

sup
x

∣∣∣∣∣P
(
Xn − E(Xn)√

Var(Xn)
≤ x

)
− Φ(x)

∣∣∣∣∣ = O (
n−1/2

)
,

where

E(Xn) ∼ (0.4977358975 · · · )n and Var(Xn) ∼ (0.1030331255 · · · )n.
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Proof. By Theorem 4.2 and Corollary 4.3, we see that (5) holds with B(u) = z0/f(u)

where z0 and f(u) can be found in the proof of Theorem 4.2 and Corollary 4.3, respectively.

In order to find μ and σ2, note that that f(1) = z0 and derivatives of f(u) at u = 1 can

be computed from the relations

w(f(u), u) = H(f(u), w(f(u), u), u) and 1 = Hw(f(u), w(f(u), u), u),

which have been established in the proof of Theorem 4.1, and implicit differentiation; see

Theorem 2.23 in [8]. This gives,

μ = 0.4977358975 · · · and σ2 = 0.1030331255 · · · .

In particular, σ2 > 0 as required and thus, the claimed limit law follows from the quasi-

power theorem.

2 4 6 8 10 12 14
k

1
2
3
4
5
6
7

Log10

(a) n = 15

5 10 15 20
k

2

4

6

8

10

12

14
Log10

(b) n = 25

Figure 8: The distribution of the number of base pairs for n = 15 and 25, where the
points (k, log10 fn,k) are plotted.
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Appendix

For the interested reader, here we briefly present an alternative way for computing F (x)

without introducing any auxiliary functions according to an idea suggested by one of the

anonymous referees. According to the “position” of base 1, we can classify the studied

pairs (S, T ) of non-empty secondary structures into three cases:

• Case 1′′: base 1 is neither paired in S nor in T . The pairs in this case are clearly

counted by xF (x, y).

• Case 2′′: base 1 is contained in a cycle when viewing the pair (S, T ) as a conventional

graph (with multiple edges). This case consists of pairs in Case 1, Case 2(iv)(b)

and their upside-down version in Section 3 of the paper. The contribution of this

case is then given by

x2y2F (x, y)[F (x, y)− 1] +
2x4y4[F (x, y)− 1]3F (x, y)

1− x2y2[F (x, y)− 1]2
.

• Case 3′′: base 1 is contained in a path. This is the most subtle case to handle
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without the aid of introducing auxiliary functions. We distinguish two situations

below.

(a) Suppose base 1 is the leftmost terminal point of a path of length i ≥ 1. Note

that this path contains i + 1 bases and i edges (arcs), contributing a factor

xi+1yi at first. Next, in each of these i intervals separated by the i + 1 bases,

there may be a possibly empty substructure. Identifying intervals which are

allowed to contain an empty substructure is necessary. Similar analysis was

carried out in studying γ structures [10,17]. It is the key to realize that every

time we switch the proceeding direction when traveling along the path starting

with base 1, we “create” an interval which is allowed to contain an empty

substructure. See Figure 9 for an illustration. Suppose along the path, there

1

F

F-1

F

F-1
F

switch

switch
F-1

Figure 9: Base 1 is the leftmost terminal point of a path of length 5 with 2 direction
switches resulting in two possibly empty substructures F .

are j times of switching direction. Since at the end point (with respect to

the traveling direction) of each arc except the last arc there is a possibility of

switching direction, the contribution of these i intervals is

(
i− 1

j

)
F (x, y)j[F (x, y)− 1]i−j.

Note that to the right of the rightmost base of the path containing 1 there

may be a possibly empty substructure which contributes an additional factor

F (x, y), and that base 1 may be paired either in S or T , yielding a factor 2.
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Hence, the pairs in this situation are counted by

2F (x, y)
∑
i≥1

i−1∑
j=0

xi+1yi
(
i− 1

j

)
F (x, y)j[F (x, y)− 1]i−j

=
2x2yF (x, y)[F (x, y)− 1]

1− xy[2F (x, y)− 1]
.

(b) Suppose base 1 is a middle point of a path, i.e., 1 is paired in both S and T .

This path could be viewed as two independent paths, one starting from the arc

containing 1 in S and the other starting from the arc containing 1 in T . These

two paths may be analogously processed as in situation (a), and the detail is

left to the interested reader. Finally, the pairs in this situation are enumerated

by

2x2yF (x, y)[F (x, y)− 1]

1− xy[2F (x, y)− 1]
xyF (x, y) +

4y(x2yF (x, y)[F (x, y)− 1])2

(1− xy[2F (x, y)− 1])2
.

In summary, we have

F (x, y) = 1 + xF (x, y) + x2y2F (x, y)[F (x, y)− 1]

+
2x4y4[F (x, y)− 1]3F (x, y)

1− x2y2[F (x, y)− 1]2
+

2x2yF (x, y)[F (x, y)− 1]

1− xy[2F (x, y)− 1]

+
2x3y2F (x, y)2[F (x, y)− 1]

1− xy[2F (x, y)− 1]

(
1 +

2xy[F (x, y)− 1]

1− xy[2F (x, y)− 1]

)
, (6)

which is equivalent to Theorem 3.1.

Setting y = 1 in the last equation, we also obtain

F (x) = 1 + xF (x) + x2F (x)[F (x)− 1] +
2x4[F (x)− 1]3F (x)

1− x2[F (x)− 1]2

+
2x2F (x)[F (x)− 1]

1− x[2F (x)− 1]
+

2x3F (x)2[F (x)− 1]

1− x[2F (x)− 1]

(
1 +

2x[F (x)− 1]

1− x[2F (x)− 1]

)
. (7)
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